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level performance evaluation and design optimization of air-cooled heat exchangers. 

The dissertation is divided into three research thrusts. The first thrust presents a new 

adaptive DOE method for single response deterministic computer simulations, also 

called SFCVT. For SFCVT, the problem of adaptive DOE is posed as a bi-objective 

optimization problem. The two objectives in this problem, i.e., a cross validation error 

criterion and a space-filling criterion, are chosen based on the notion that the DOE 

method has to make a tradeoff between allocating new sample points in regions that 

are multi-modal and have sensitive response versus allocating sample points in 

regions that are sparsely sampled. In the second research thrust, a new approach for 

multiresponse adaptive DOE is developed (i.e., MSFCVT). Here the approach from 

the first thrust is extended with the notion that the tradeoff should also consider all 

responses. SFCVT is compared with three other methods from the literature (i.e., 

maximum entropy design, maximin scaled distance, and accumulative error). It was 

found that the SFCVT method leads to better performing metamodels for majority of 

the test problems. The MSFCVT method is also compared with two adaptive DOE 

methods from the literature and is shown to yield better metamodels, resulting in 

fewer function calls.  

In the third research thrust, an approximation-based framework is developed for 

the performance evaluation and design optimization of novel heat exchangers. There 

are two parts to this research thrust. First, is a new multi-level performance evaluation 

method for air-cooled heat exchangers in which conventional 3D Computational 

Fluid Dynamics (CFD) simulation is replaced with a 2D CFD simulation coupled 

with an ε-NTU based heat exchanger model. In the second part, the methods 



  

developed in research thrusts 1 and 2 are used for design optimization of heat 

exchangers. The optimal solutions from the methods in this thrust have 44% less 

volume and utilize 61% less material when compared to the current state of the art 

microchannel heat exchangers. Compared to 3D CFD, the overall computational 

savings is greater than 95%. 
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Chapter 1 Introduction 
 

In this chapter we present the motivation behind this dissertation, the research 

objectives, and the underlying assumptions, followed by a brief description of the 

research thrusts. 

 

1.1 Motivation 

Real world engineering systems are highly complex in nature and often involve 

multiple disciplines such as heat transfer analysis, fluid flow analysis, structural 

analysis, control systems etc. The design of these systems is more complex even 

considering the recent advances made in the field of distributed and high performance 

computing. The design and analysis of the individual disciplines is generally carried 

out with the help of complex simulation models. An example of such a complex 

simulation is a Computational Fluid Dynamics (CFD) simulation for a heat 

exchanger. This simulation can take anywhere between a few minutes to several days 

to execute and converge, not to mention that this is the time required for a single 

simulation. During optimization in a single or multidisciplinary environment, such a 

simulation may be invoked by the optimizer several hundred, even several thousand 

times. Clearly, carrying out a design optimization with such a complex simulation 

tool is not feasible. Figure 1.1a shows this conventional optimization procedure. A 

complex engineering simulation such as CFD (Versteeg and Malalasekera, 1995; 

Anderson, 1995) is used to represent/model the performance of a heat exchanger and 

is coupled with an optimization or other analysis tools to optimize designs. In order to 
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alleviate the computational burden associated with the optimization of complex 

simulations, researchers have proposed a technique called approximation-assisted 

optimization.  

Approximation can generally be summarized as a two-phase process: (a) design 

of experiments (DOE) phase and (b) development of a metamodel. In the DOE phase, 

the first step, the complex simulation tool is run for a set of systematically chosen 

input design points. In the second phase, the inputs design points along with the 

corresponding simulation results (i.e., response values) are used to develop a 

metamodel. A metamodel, which is also referred to as a surrogate model, is a 

simplified numerical model that can reasonably reproduce the simulation results for a 

set of inputs, but at a fraction of the computational cost. This simplified model is then 

coupled to (i.e., used by) an optimizer to carry out the design optimization. The 

optimized design can later be verified by executing the complex simulation using the 

optimal design variables. The approximation assisted optimization process is shown 

in Figure 1.1b. Step-1 is the design of experiments process, Step-2 involves the 

evaluation of the CFD tool for the samples generated in the DOE phase, Step-3 is the 

development of metamodel and Step-4 is the use of metamodel for optimization and 

other analysis. 
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      (a) 

 

     (b) 

Figure 1.1 (a) Conventional  optimization, and (b) Approximation assisted optimization 

 

Several DOE techniques have been introduced in the literature (Myers and 

Montgomery, 2002; McKay et al., 1979; Currin et al. 1991), such as classical designs, 

space-filling designs, etc. Examples of metamodeling techniques include response-

surface based models (Myers and Montgomery, 2002), statistical methods (Cressie, 

1993), radial basis functions (Dyn et al., 1986) and artificial neural networks. Since 

the metamodel is developed with the (input, output) tuple generated by the simulation 
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in the DOE phase, clearly this DOE phase has a profound effect on the success or 

failure of a metamodel. Moreover, the choice of a DOE method also depends upon 

the metamodeling technique which will be used. For example, classical designs are 

not suitable for computer simulations and can sometimes result in erroneous models 

(Sacks et al., 1989; Jin et al., 2001). 

Many of the DOE techniques in the literature are such that the design points are 

generated in a single step, without using any information from the corresponding 

response or the resulting metamodel. Figure 1.2a shows this non-adaptive approach. 

Subsequently researchers developed adaptive DOE techniques in which the DOE 

process was carried out in stages i.e., one or more points were sampled in each stage 

of the DOE process. In this way, at each stage a metamodel is developed and its 

performance is evaluated based on relevant criteria and this information is then used 

to select points in the next stage. It has been shown that in general the adaptive DOE 

methods are superior (see, e.g., Jin et al., 2002; Li and Azarm, 2006; Lam and Notz, 

2007) to non-adaptive methods. Figure 1.2b shows a general flow chart for an 

adaptive DOE procedure. As shown in Figure 1.2b, the performance of the 

metamodel is evaluated at each step (or iteration) and new points are sampled based 

appropriate performance criteria. 
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     (a)                   (b) 

Figure 1.2 Generic flow chart for (a) Non-adaptive DOE and (b) Adaptive DOE 

 

An important aspect of a computer simulation is that it can have multiple outputs. 

Thus any good approximation method should take into account the multiple responses 

as well. One could conduct a DOE and develop a metamodel for each individual 

response, but this would result in excessive simulation runs, probably more than what 

the designer wants to spare. 

A number of adaptive DOE techniques (Jin et al., 2002, Li and Azarm, 2006; 

Kleijnen, 2004; Li et al., 2006)  focus on allocating new points in the input (i.e. 

design) space based on a space filling criteria, while others focus on metamodel 

performance metric such as cross-validation only. In terms of approximation for 

multiple-responses, generally, DOE is seen as an extension of a multiresponse 

metamodel (Romero et al., 2006, Li et al., 2006) via the use of correlation between 

responses. This is in contrast to considering the multiple responses individually (i.e., 
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developing individual metamodels for each response) in the DOE phase. All of these 

DOE techniques, except for Jin et al., (2002) have not been applied to design 

problems with higher dimensions (e.g. 4 - 8 dimensions) nor have been applied to a 

wide range of test problems to demonstrate their scalability.  In some cases (Busby et 

al., 2007) the resulting statistical metamodels have been compared with response 

surface methods, which is not a fair comparison. In general, the metamodel 

performance (i.e., how well the metamodel represents the underlying true function or 

response) can be improved when the points sampled in the DOE phase systematically 

cover the entire region of the design space while simultaneously allocating more 

points in regions that are nonlinear. Moreover, in multiresponse simulations, a good 

DOE technique should objectively make a tradeoff between multiple responses as 

well as the space-filling criteria and the metamodel performance and should be 

scalable to higher than conventional input dimensions and to a wide range of 

problems. 

1.2 Dissertation Objective 

The objective of this dissertation is (a) to develop a single-response adaptive 

design of experiments technique for deterministic black-box computer simulations 

that is scalable and widely applicable, and an empirical framework for implementing 

the proposed approach when there is a limit on the computational resources (i.e., the 

number of simulation calls), (b) to extend the single-response DOE approach to 

multiresponse adaptive design of experiments technique for deterministic black-box 

computer simulations, and (c) to develop an approximation-based framework for the 

performance evaluation and design optimization of novel air-cooled heat exchangers. 
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1.3 Assumptions 

The following assumptions are made in the development of the approach: 

(a) The simulation models are deterministic, i.e., no matter how many times 

the simulation is invoked, it will always yield the same output for the same 

inputs. 

(b) The simulation responses are continuous and the models are black-box. In 

other words, no information about the simulation model or its output is 

known before hand and no other assumptions are made with regards to its 

behavior. 

(c) The metamodel developed based on the proposed approach is desired to be 

globally (i.e. in the entire input space) applicable based on the available 

computational resources. 

(d) The computational resources available to execute the simulation are 

limited. In other words, i.e., the number of available simulation calls is 

fixed and the designer wishes to obtain the best possible metamodel given 

the DOE points. 

(e) The computational effort for performing a single simulation is much 

higher than that required for building the DOE and the metamodel. 

1.4 Research Thrusts 

This dissertation is divided into three research thrusts as discussed in the 

following sections. 
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1.4.1 Research Thrust-1: Single Response Adaptive DOE 

In this research thrust, an adaptive DOE approach is developed for single 

response deterministic computer simulations. An adaptive DOE method has to make 

tradeoffs between allocating new points either in regions of the design space that are 

sparsely sampled or in regions that correspond to highly sensitive behavior (non-

linear and multi-modal) of the response. In this thrust, it is shown how important it is 

to make a judicious tradeoff between a space-filling criterion and metamodel 

performance in selecting new experiments. A multiobjective optimization problem is 

formulated to solve this adaptive DOE problem.  The newly developed approach is 

applied to a suite of 24 test problems to demonstrate its applicability to a wide range 

of design problems and also its scalability to higher (more than 2) dimensions. The 

problems in the test suite are compiled from the literature and are challenging (Jin et 

al., 2002; Li et al., 2006; Busby et al., 2007) problems for adaptive DOE methods. 

1.4.2 Research Thrust-2: Multiresponse Adaptive DOE 
In this research thrust, an adaptive DOE approach is developed for multiresponse 

deterministic computer simulations. This is an extension of the approach developed in 

Research Thrust-1, wherein the problem is viewed as a multi-objective optimization 

problem of choosing samples while weighing the relative performance of the 

metamodels for individual responses. This new multiresponse approach is applied to a 

total of 10 numerical examples from the literature and the results are compared with 

published results from previous techniques. 
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1.4.3 Research Thrust-3: Approximation Based Framework for Design 
Optimization of Novel Heat Exchangers 

In this research thrust, a new approach for design optimization and performance 

evaluation, i.e., heat transfer characteristics and pressure drop, of novel air-cooled 

heat exchangers in a computationally efficient manner is developed. Conventionally, 

3D CFD is used to evaluate the performance of a novel air-cooled heat exchanger 

such as tube-fin or microchannels. The novel aspect generally refers to a new fin 

design or a tube bundle design. Due to the computational burden associated with 3D 

CFD, a small section (i.e., very short length) of the heat exchanger is simulated and 

the results are assumed to be valid for the entire heat exchanger. Even while 

simulating a small section of the heat exchanger, the computation time required is in 

the range of few hours to a few days. A new approach is proposed, in which 2D CFD 

(instead of 3D CFD) coupled with a ε-NTU heat exchanger model (Jiang et al., 2006) 

is used to evaluate the performance of heat exchangers in a computationally efficient 

manner.  This new approach is further enhanced with the use of the techniques 

developed in Research Thrusts-1 and 2 and the resulting metamodels are combined 

with an optimizer to find optimal heat exchanger design configurations.  

1.5 Organization of the Dissertation 

The dissertation is organized as shown in Figure 1.3. Chapter 2 provides 

definitions and terminology used in this dissertation. Also included in Chapter 2 is 

background information on multiobjective optimization, approximation assisted 

optimization, and some details on metamodeling and DOE techniques from the 

literature. Chapter 3 presents the Research Thrust-1, wherein a new approach for 
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single response adaptive design of experiments is proposed. Chapter-4 presents a new 

adaptive DOE approach for multiresponse simulations. Chapter-5 presents an 

approximation based framework for performance evaluation and optimization of air-

cooled heat exchangers. Chapter-6 concludes the dissertation with summary, 

conclusions, research contributions and directions for future research. 
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Figure 1.3 Organization of Dissertation 
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Chapter 2 Definition and Terminology 
 

2.1 Introduction 

In this chapter we present several definitions that are used throughout the 

dissertation. We begin with the formulation of a general multiobjective optimization 

problem followed by a discussion of the resulting set of solutions and methods to 

obtain solutions to a multiobjective optimization. This is followed by an introduction 

to approximation assisted optimization and a short description of relevant design of 

experiments and metamodeling approaches. 

2.2 Multi-objective Optimization 

A multi-objective optimization problem (MOOP) can be formulated as follows: 

 

minimize       ( )                1,...,

subject to:
                     ( ) 0          1,...,

                         1,...,

ix

j

L U
k k k

f x i M

g x j J

x x x k d

=

≤ =

≤ ≤ =

 (2.1) 

where  fi refers to the ith objective of the problem, x is a vector of d design variables,  

i.e., x = (x1,x2,…,xd)T, where T indicates a transpose. There are M objectives that are 

to be minimized. It is assumed that at least two of the M objectives are conflicting in 

nature. The functions g1,…,gJ are J inequality constraints. The vectors L
kx and 

U
kx indicate the lower and the upper bounds of the variable xk.  



 

 13 
 

2.2.1 Simulation 

A computer program that can calculate the values of fi and gj is termed as a 

simulation. In this dissertation we focus on simulations that are reproducible or 

deterministic. By deterministic we mean that no matter how many times the 

simulation is invoked, for the same value of input design variables, it always yields 

the same outputs (i.e., values for fi and gj). A simulation can have a closed (explicit) 

form or can be iterative in nature. In this dissertation the simulation is treated as a 

black-box object as shown in Figure 2.1, where an example of single response (or 

output) simulation, Figure 2.1a, and multiresponse simulation, Figure 2.1b is 

provided. 

   (a)      (b) 

Figure 2.1 Black-box simulations, (a) Single response and (b) Multiresponse 
 

2.2.2 Input Space, Experiment and Design 

The d-dimensional space formed by all possible values of dx R∈  is termed as the 

design variable space or design space. Since x is an input to the simulation, its 

corresponding space is termed as the input space. Each element of x in the input space 

is assumed to be bounded by a lower and an upper bound (see Eq. 2.1) and thus can 

be linearly normalized in the range [0,1]. The output from the simulation is termed as 

a true response when the full (or original model) for the simulation is used. If another 
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technique such as a metamodel is used to obtain the response for a simulation, the 

corresponding response is termed as a predicted response. 

A point xi,( a specified vector of x1,…,xd) is referred to as an experiment if it has 

been evaluated (or observed) for its true response, i.e., by invoking the simulation. In 

contrast, a point that has not been evaluated for its true response is termed as an 

unobserved point. 

A set of experiments is termed as a design, denoted by D. 

The process of choosing the various experiments is termed as sampling. 

2.3 Dominance and Pareto Set 

In multiobjective optimization, when there are two or more conflicting objectives, 

there cannot be a single optimum solution which simultaneously optimizes all 

objectives. Thus the solution obtained from a multiobjective optimization problem is 

a set of optimal solutions with varying degrees of objective values.  

Considering Eq. (2.1), a solution x1 is said to dominate (Goldberg, 1989; Deb, 

2001) a solutions x2, when both (a) and (b) below hold: 

(a) Solution x1 is better than or equal to x2 in terms of all the objectives and 

(b) Solution x1 is strictly better than x2 in at least one of the objectives. 

When comparing two solutions, when the first condition is not satisfied, the two 

solutions are said to be non-dominated with respect to each other. In other words, if a 

point is not dominated by any other point, it is said to be non-dominated. 
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Amongst a set of solutions P, the non-dominated set of solutions P’ are those that 

are not dominated by any other point in P. When P is the entire search space, then the 

resulting non-dominated set P’ is termed as the Pareto optimal set and the solutions 

are said to form a Pareto frontier in the objective space (i.e., f-space). Several 

algorithms are presented in Deb (2001) to efficiently identify a non-dominated set 

amongst a given set of solutions. 

Figure 2.2 Dominated points and Pareto points 

 

Note that in MOOP’s where the objectives are not conflicting, the resulting Pareto 

optimal solution set will contain only one optimal solution (if it is unique). 

2.4 Methods for solving Multi-objective optimization problems 

2.4.1 Overview 
In general there are two classes of methods for solving multi-objective 

optimization problems. They are: (a) classical methods and (b) non-classical methods. 

Classical methods are generally gradient-based or direct search methods. These 
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methods are: weighted-sum method (Cohon, 1978), ε-constraint method (Haimes, 

1971), weighted metric method (Miettinen, 1999), value function method (Keeny and 

Raiffa, 1976; Miettinen, 1999), Schaffler’s stochastic method (Schaffler et al., 2002; 

Shukla et al., 2005), normal boundary intersection method (Das and Dennis, 1998), 

goal programming (Charnes et al., 1955; Ignizio, 1976; Steuer, 1986) etc. Gradient 

based methods are deterministic in nature and yield Pareto solutions one point at a 

time. 

The second class of methods is non-classical based methods for solving MOOP’s. 

Many of the non-classical methods are based on natural phenomenon. These methods 

are generally population based such as evolutionary algorithms (Goldberg, 1989; 

Deb, 2001; Coello Coello et al., 2007), particle swarm optimizers (Coello Coello et 

al., 2004), multiobjective simulated annealing (Serafini, 1992; Nam and Park, 2000) 

and Timmel’s population based method (Timmel, 1980; Shukla et al., 2005) to name 

a few.  

Several variations of population based multiobjective optimization evolutionary 

algorithms have been reported in the literature (Fonseca and Fleming, 1993, 1998a, 

1998b; Srinivas and Deb, 1994; Horn et al., 1994; Zitzler and Thiele, 1998; Deb et 

al., 2000, Deb, 2001; Coello Coello et al., 2007). These methods try to assign a 

goodness or fitness to a design point, based on its objective and constraint values. It is 

also important to note that population-based methods require numerous function calls, 

at times several thousands, of the simulation to evaluate the objectives and 

constraints. In spite of the recent advances in the field of high performance and high 
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throughput computing, the use of population-based optimization methods for certain 

complex problems is not feasible.  

In this dissertation a multiobjective genetic algorithm (MOGA) is used for solving 

MOOP’s. It is important to point out that even though MOGA is used for solving 

optimization problems in this dissertation, the approaches proposed are not limited to 

MOGA and any other suitable multiobjective optimization technique can be used. 

The details of a genetic algorithm (GA) and a MOGA are discussed in the following 

section. 

2.4.2 Genetic Algorithms 

Genetic Algorithms (GA) as defined by Goldberg (1989) are: “search algorithms 

based on natural selection and natural genetics”. GA maintains a pool of candidate 

solutions, each of which is assigned a fitness based on its usefulness or ‘payoff’. 

Fitness is a scalar measure of how well a particular candidate solution satisfies the 

given problem objectives. At each iteration or generation of GA, candidate solutions 

are selected for reproduction based on their fitness to form new offspring or solutions. 

The reproduction process is carried out via the use of genetic operators such as 

selection, crossover and mutation (Goldberg, 1989; Deb, 2001). A set of probabilistic 

rules determines whether a candidate solution undergoes crossover or mutation and at 

what point. A powerful feature of GA’s is that they search in multiple directions 

simultaneously and do not require any gradient information or other supplementary 

information (convex objective or linear constraints) about the problem at hand, only 

the usefulness or the payoff value. This makes the GA an ideal tool for optimization 

of highly non-linear functions involving a combination of continuous and discrete 
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design variables and black-box functions. A schematic of the GA design 

representation and operators is shown in Figure 2.3 for a heat exchanger optimization 

(Aute et al., 2004) example. There are three design variables viz. number of tubes, Nt 

(discrete), tube length, L (continuous) and fins per inch, FPI (discrete). A 

chromosome representing one design is shown in Figure 2.3a. The genetic algorithm 

operators of crossover and mutation are shown in Figure 2.3b. 

0 1100101

Nt

L

FPI

0

 

(a) 

 

(b) 

Figure 2.3 Genetic Algorithms, (a) design representations and (b) operators 

 

2.4.3 Multiobjective Genetic Algorithm 
Since GA’s deal with a scalar fitness value, usually some kind of aggregating 

method or a utility function is used to assign fitness to solutions. A genetic algorithm 

that is modified to include multiple objectives is termed as a Multiobjective Genetic 

Algorithm (MOGA). The main difference between MOGA and GA is the 
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introduction of the fitness assignment scheme that evaluates the goodness of 

candidate solutions based their respective objective and constraint values. Typically 

MOGA considers three criteria in fitness assignment, viz., (a) objective values, (b) 

constraint values and (c) crowding. The objective values are handled using some kind 

of non-dominated sorting procedure and address the aspect of reaching as close as 

possible to the true Pareto frontier. The constraint violations are handled using a 

penalty or custom selection operator and address the aspect of feasibility. The 

crowding metric is handled using some form of distance measure such as niche 

(Goldberg, 1989) or crowding distance (Deb, 2000) and avoids clustering of 

solutions. Figure 2.4 shows a flowchart for a simple multiobjective genetic algorithm. 



 

 20 
 

Start

Initialize Population

Evaluate Population

Fitness Assignment
Perform Non-dominated Sorting

Assign Ranks
Calculate fitness value (scalar)

Genetic Algorithm
Selection

Mutation, Crossover

Stopping 
Criteria

Create New Population

Stop
Yes

No

 

Figure 2.4 MOGA flow chart 
 

2.5 Approximation Assisted Optimization 

2.5.1 Overview 
As mentioned in Section 2.4.1, optimization requires multiple invocations of the 

simulation tool to calculate the objectives and the constraints. Thus optimization may 

not be feasible when the simulation is very complex such as a CFD, which can 

execute for several days to evaluate one set of inputs. In order to reduce the 
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computational burden associated with optimization, approximation-assisted 

optimization is proposed by researchers (see, e.g., Simpson et al., 2001). In 

approximation-assisted optimization, a simplified model capable of reasonably 

representing the simulation behavior is used along with the optimizer to carry out the 

optimization. This simplified model is termed as a metamodel or a surrogate model. 

As explained in Figure 1.1 earlier, approximation-assisted analysis and optimization 

in engineering design involves four steps: (1) a design of experiments (DOE) or 

sampling stage where a design is chosen for conducting an experiment to generate 

response data, (2) metamodeling stage in which the data from first step is used to 

build a metamodel, (3) verification of the metamodel to assess how good the 

metamodel is, and (4) optimization using the metamodel. The metamodel that is 

developed is computationally more efficient (less expensive) than the actual 

simulation which it will replace. An important step in approximation-assisted 

optimization is the verification of the optimum solutions, i.e., comparison of the 

metamodel predictions with the true responses for the optimum designs. Once a 

verified metamodel is developed, it can be used for multiple optimization studies. 

In the metamodel development phase, the simulation is invoked multiple times for 

carefully chosen points from the input space. This process is termed as the design of 

experiments or DOE. These inputs along with their true responses are then used to 

develop a metamodel. The design of experiments is the structured and organized 

method for determining the relationship between factors or inputs (to a simulation) 

and the output of the simulation. The process of choosing the various experiments is 
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termed as sampling. Different sampling techniques have also been studied and 

presented in the literature (Jin et al., 2001).  

The second step in approximation is to fit the data to a model. These techniques 

involve the use of response surfaces or other sophisticated stochastic models to 

approximate the true response. Several computer based meta-modeling approaches 

are discussed in Simpson et al. (2001) and Wang and Shan (2007). The different 

approaches can be broadly categorized as (a) response surface based models (b) 

artificial neural networks (c) statistics based models such as Kriging (d) machine 

learning and (e) hybrid models. There are several metamodel verification methods 

proposed in the literature such as random-sample evaluation, cross-validation 

(Cressie, 1993; Martin and Simpson, 2005) etc. The random sample evaluation 

method is the most popular and easiest to implement though it requires additional 

function evaluations. In this method, a random sample of designs is generated and the 

predicted response from the metamodel is compared with the true response. The 

results of this comparison can be quantified using statistical metrics which are 

discussed in Section 2.5.3. 

Approximation can be carried out in an offline or online manner. The difference 

between offline and online approximation is shown in Figure 2.5.  In offline 

approximation, as shown in Figure 2.5a., the design of experiments and the 

metamodel development is carried out before any optimization is conducted. In online 

approximation, shown in Figure 2.5b, an existing metamodel is used during 

optimization, but based on the progress (i.e., design space explored by the optimizer) 

of the optimizer, new points are sampled in intermediate stages (e.g., between 
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iterations of the optimizer) and the metamodel is updated. Online approximation has 

the advantage that as the optimization progresses towards optimal solutions, the 

accuracy of the metamodels can be selectively improved in the region of the optima. 

 

  (a)    (b) 

Figure 2.5 Approximation, (a) offline and (b) online 
 

2.5.2 Maximum Entropy Design 
The different sampling methods can be broadly grouped (Simpson, 2001) as: 

classical methods, space filling methods and sequential or adaptive methods. One 

such relevant spacing filling method is Maximum Entropy Design (MED) method 

and is discussed in this section. 

Entropy as a measure of information content was first introduced by Shannon 

(Shannon, 1948). Lindley (1956) interpreted Shannon’s entropy H as the amount of 

information retrieved from an experiment.  It was then showed (Shewry and Wynn, 

1987; Currin et al., 1988) that the entropy criterion H, selects a new experiment as the 

one that maximizes the expected retrieved information due to the new experiment. 
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Mathematically, given a current design (x1,x2,…,xn), the new experiment is chosen as 

follows: 

 1 1 2arg max ( , ,..., ; )n nx H x x x x+ =  (2.2) 

where (x1,x2,…,xn) are the existing n experiments and the “argmax” denotes the 

optimal solution xn+1 of the maximum entropy optimization problem. 

Further, under the assumption of normal priors (Shewry and Wynn, 1987; 

Koehler and Owen, 1996), it was shown that the entropy criterion is the same as 

maximizing the determinant of the prior covariance matrix R, i.e., 

 1 arg max det( )nx R+ =  (2.3) 

where det indicates a determinant and R is the ((n+1) × (n+1)) covariance matrix of x. 

Each element of R is calculated using the augmented design (x1,x2,….,xn,xn+1), where 

there are n existing designs and xn+1 is the new candidate design. The details of 

covariance matrix based on the normal priors are given in Section 2.5.3. 
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(a) (b) 

Figure 2.6 (a) Initial designs and (b) maximum entropy designs 
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Figure 2.6a shows an initial design with 5 points in a two dimensional input space 

and Figure 2.6b shows 15 additional designs obtained using the maximum entropy 

criterion. Note that a significant number of designs are on the boundaries of the input 

space (Currin et al., 1991).  

2.5.3 Kriging Method 
Kriging is a widely used spatial correlation and prediction technique in the field 

of Geostatistics (Cressie, 1993; Armstrong 1998) and is named after the South 

African mining engineer D. G. Krige. The basic idea behind Kriging is to use existing 

responses at some points xi, where i=1,…,n., to predict the response at some unknown 

point x0.  

Suppose we want to predict the model response at some point x0. Initially, when 

there are no samples, then there is some assumed uncertainty in this function value. 

This uncertainty can be modeled as a random variable Y(x) with a mean μ and an 

associated variance σ2. In other words, the function has a typical value of μ but has 

some local variations in a certain range as we traverse the x-space. Consider two 

points xi and xj. Assuming that the function being modeled is continuous then the 

corresponding function values y(xi) and y(xj) will be close if the distance between xi 

and xj i.e. ||xi-xj|| is small. The Kriging approach approximates a true model response 

y(x) with a stochastic process as follows: 

 ( ) ( ) ( )y x f x Y x= +  (2.4) 

where y(x) is the unknown function that is being modeled and Y(x) is a normally 

distributed Gaussian process. Compared to ordinary a least squares method, where we 

are interested in finding the functional form which best represents the observed data, 



 

 26 
 

in Kriging, we are interested in predicting how the function typically behaves and not 

the exact functional form. Various functional forms for f(x) and Y(x) are available in 

the literature (Jones, 2001; Simpson et al., 2001; Martin and Simpson, 2005). The 

term f(x) is similar to a polynomial model in a response surface method and is 

equivalent to a global mean μ for the model. The global mean μ is the mean of all the 

responses in the current design. For simplification purposes f(x) is generally treated as 

a constant. The Y(x) term represents the local deviations from the global mean 

obtained by interpolating the available data based on distance between the 

unobserved point x0 and the sampled points. 

The term Y(x) is represented through the use of one of many correlation functions. 

One of the widely used correlation functions (Sacks et al., 1989; Jones, 2001) is: 

 
1

[ ( ), ( )] exp( | | )
d
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i j l il jl

l
Corr Y x Y x x xθ

=

= − −∑  (2.5) 

In this equation, d is the dimension of vector x, xil and xjl are the lth components of 

the vectors xi and xj,   θl is the degree of correlation between the responses in the lth 

coordinate and is termed as the correlation parameter in the lth direction,  and p 

controls the smoothness of the function in the lth direction. The terms θl and pl provide 

a means for adjusting the relative importance in each dimension of the input space. 

For simplification, a single value of θ is used and the distance term is replaced by the 

Euclidean distance between xi and xj. When one value of θ is used, the model is 

termed as an isotropic model, which treats all dimensions equally. In Eq. (2.5) when 

p=1, the correlation is known as the exponential correlation. 

The effect of θ and p (Jones et al., 1998) on the correlation is shown in Figure 2.7. 
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Figure 2.7 Correlation vs. Euclidean distance for different θ and p values 
 

As observed from Figure 2.7, the correlation tends to zero as the distance ||xi-xj|| 

increases. As θ increases, the correlation drops rapidly and p controls the smoothness 

of the correlation. In practice, θ values are calculated for each dimension in the input 

space, and thus when the correlation is highly sensitive to one of the dimensions; the 

corresponding θ value will be higher. 

Suppose there are n responses in the current design, then let y represent the set of 

n observed true responses as given in Eq. (2.6):  
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 (2.6) 

The uncertainty in the function values (local deviations) at the n points can be 

represented by a vector of random variables Y(x) as: 
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 (2.7) 

This vector has a covariance matrix Cov given by: 

 

 2( )Cov Y Rσ=  (2.8) 

where R is an n × n correlation matrix with the (i,j) element given by Eq. (2.5). The 

diagonal elements of R are always of the form Corr[Y (xi), Y (xi)] and thus are always 

equal to 1. Let I denote an n × 1 vector of ones and r denote the correlation of Y(x0), 

the unobserved point, with Y(xi), the current designs, as 
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 (2.9) 

The values of the correlation parameters, such as µ, σ, θ and pl need to be 

estimated. They are obtained by maximizing the likelihood function or in other 

words, to model the functions behavior so that it closely represents the observed data. 

Maximizing the likelihood function provides an estimate of the optimal values of µ, 

σ2, as functions of R as follows 
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and  
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n
μ μσ

−− −
=  (2.11) 

 Then the estimated response for an unobserved point x0 is given using the 

Kriging predictor as: 

 

 1
0ˆ ˆ ˆ( ) ( )Ty x r R y Iμ μ−= + −  (2.12) 

 In addition to the above predictor, the Kriging measure of uncertainty in the 

estimated response can be calculated as follows: 
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The derivation for this standard error is provided in Sacks et al. (1989) and Jones 

(2001). It can be seen that the variance s2 is zero for an observed point. In utilizing 

Kriging predictor in approximation assisted optimization (Bakker, 2000; Jones, 

2001), this standard error can serve as a basis for making the decision between using 

the predicted response and invoking the analyzer functions to obtain a true response. 

The prediction of the standard error is a big advantage of Kriging over other 

metamodeling methods since the metamodel can then be dynamically updated based 

on the responses during a given optimization procedure. Furthermore, as mentioned, 

Kriging does not require a functional form, though the choice of the correlation 

function is problem dependent. Simpson et al. (2001) found that Kriging is extremely 
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flexible and suitable for deterministic computer experiments and recommend the use 

of Kriging metamodels when the number of input variables is less than 50. 

 

2.5.4 Metamodel Performance Metrics: Errors Verification 

The performance of a metamodel is generally evaluated by comparing the 

response obtained using the metamodel with the true response for a given set of 

points termed as a test sample. This test sample can be chosen randomly or using 

some systematic method e.g., based on a statistical distribution. 

Let y(xi) be the true response from a simulation and ˆ( )iy x  be the predicted 

response for a test sample of size n, where i=1,…,n. Then we can define a global 

measure of the accuracy of the metamodel termed as the root mean square error 

(RMSE) as follows: 

 2

1

1 ˆRMSE [ ( ) ( )]
n

i i
i

y x y x
n =

= −∑  (2.14) 

The maximum absolute error (MAE) represents the maximum deviation of the 

predicted response from the true response for all the test samples and is given by: 

 ˆMAE max(| ( ) ( ) |), 1,...,i iy x y x i n= − =  (2.15) 

In addition, we can define RMSE and MAE based on relative errors. The relative 

error for a sample xi can be defined as: 
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=  (2.16) 

Then, the corresponding relative RMSE and relative MAE can be defined as: 
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1
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e
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= ∑  (2.17) 

and 

 RMAE max(| |)ie=  (2.18) 

The RMSE and MAE consider only the numerical magnitude of the errors. The 

relative RMSE and MAE metrics are useful when the numerical range of the response 

i.e., difference between the minimum and the maximum values differs by several 

orders of magnitude. RRMSE and RMAE are useful in practical engineering 

examples as demonstrated in Chapter 5. 

Even though the above metrics or RMSE and MAE are widely used in the 

literature for assessing metamodels, these measures are sensitive to the sample size. 

Hamad (2006) introduced a new metric termed as metamodel acceptability score 

(MAS) that is less sensitive to the sample size and is more intuitive in the context of 

the use of metamodels for global optimization.  The designer needs to provide a 

bound on the acceptable predictor error of the metamodel. Let MASε  be an 

acceptability threshold, then a predicted response ŷ  is said to be acceptable if Eq. 

(2.19) is satisfied: 

 MAS MASˆ(1 )  ( / ) (1+ )i iy yε ε− ≤ ≤  (2.19) 

If there are n test samples, of which m responses are acceptable as per above 

equation, then MAS is defined as: 

 MAS 100m
n

= ×  (2.20) 
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The acceptability criteria is a fraction, e.g., MASε =0.1 implies a tolerance of 10% 

in the predicted response. It should be pointed out that the acceptability criteria need 

not be symmetric. This is important especially when certain information about the 

application is known before hand. For example, in an air-cooled heat exchanger 

design, a metamodel that over predicts the air-side pressure drop (in a reasonable 

range) could still be acceptable, since this will result in a conservative response and 

may result in computational savings. A numerical issue with Eq. (2.19) is the case 

when 0iy = . Hamad (2006) proposes the following remedies: (a) if the number of 

cases with zero true response is a small fraction of the overall sample size, then these 

cases can be neglected, (b) if the former is not the case, then a ‘shift-transformation’ 

can be applied to iy , i.e., i iy y δ= +  to avoid with division with zero. The shift 

transformation should not affect the overall value of the MAS. 

It should be pointed out that in the case of multiple responses, the metrics of 

MAS, RMSE, MAE, RRMSE and RMAE are calculated individually for each 

response. 

 Another method of metamodel verification is the method of cross-validation 

(CV) error calculation (Cressie, 1993; Meckesheimer et al., 2002). A p-fold cross-

validation approach is carried out as follows: (i) the existing design (i.e., inputs and 

responses) are split into p different mutually-exclusive subsets, (ii) a metamodel is fit 

p times, each time leaving out one subset, the resulting metamodel is used to predict 

the response for the omitted subset and an error measure is calculated. This error 

measure is the cross-validation error (CVE) and is defined in the literature as the 

absolute difference between the predicted and the actual response. A special case of 
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cross-validation method is the leave-one-out (LOO) error calculation and this is 

discussed in more detail in Chapter 3. For Kriging metamodels Meckesheimer et al. 

(2002) propose to use 0.1n or n1/2 as the value for p, where n is the number of samples 

in the current design. We note that while 0.1n is a good number for assessing the 

metamodel performance, it is computationally very expensive as n increases, since 

each cycle of CV calculation requires the metamodel to be refitted. The advantage of 

this approach is that it does not require any additional experiments. In statistics a 

technique called boot-strapping (Cressie, 1993) is also used for model verification, 

but in contrast to cross-validation, boot-strapping requires additional function calls. 

Throughout this dissertation, the metrics of RMSE, MAE, RRMSE, RMAE and 

MAS are used to evaluate the performance of metamodels.  

2.5.5 Maximin-Scaled Distance (MSD) Method 
The new adaptive approach proposed in Chapter 3 is compared against two other 

adaptive DOE methods from the literature. The first of these is the maximin scaled 

distance method proposed by Jin et al. (2002). The maximin scaled distance (MSD) 

approach (Jin et al., 2002) is an enhanced version of the original maximin distance 

approach (Johnson et al., 1990) to make use of the information available from the 

metamodel. The method chooses the next sample as the point that is farthest from all 

points in the current design. The distance used for comparison is a scaled distance as 

given in Eq. (2.21). Mathematically, the next sample xn+1 is chosen as the solution of 

the problem: 
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The weight parameters ha are chosen to be the same as the correlation parameters 

lθ  obtained from a Kriging metamodel. These weight parameters reflect the relative 

importance of the individual design variables. At each stage, a Kriging metamodel is 

built and the estimated dθ values are used to solve the optimization problem from Eq. 

(2.21) to obtain the next sample. 

2.5.6 Accumulative Error (ACE) Method 
The second adaptive DOE method from literature is the accumulative error (ACE) 

method proposed by Li and Azarm (2006) and in Li (2007). The new approach 

proposed in Chapter 3 was inspired in part by the ACE method. 

The ACE method develops a metamodel for leave one out cross validation errors 

using a simple isotropic correlation along with the use of a distance threshold to avoid 

clustering of points. Isotropic implies that the functional behavior is the same along 

each dimension of the input space. In the general the cross-validation error 

metamodel tends to predict higher error values for points that are close to the points 

in the current design. Let D be the current design with n points, then the new sample 

is given by: 
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where dcrit is a cluster threshold distance calculated based on the points in the current 

design and α is an adaptive correlation parameter. The details of calculation of dcrit 

and α can be found in Li and Azarm (2006) and Li (2007). It should be pointed out 

that α is a scalar value and as such does not take into account the effect of individual 

inputs on the response. The cluster threshold dcrit is used to ensure that new sample 

points are sufficiently away of existing points. 

In the next chapter, a cross-validation based adaptive design of experiments 

method for single response deterministic simulations is presented. 
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Chapter 3 Single Response Adaptive Design of Experiments 
 

3.1 Introduction 

This chapter presents a new adaptive design of experiments method for single 

response deterministic simulations. As introduced in Chapters 1 and 2, any 

optimization algorithm requires numerous invocations of the simulation tool which 

calculates the objective and constraint functions of the optimization problem. Often in 

real engineering design problems these functions (or their corresponding simulations) 

do not have a closed form expression, i.e., they are iterative in nature and can involve 

a solution of linear, nonlinear and/or differential equations. An example would be a 

complex finite element or a computational fluid dynamics simulation. Even when 

executed on the most sophisticated computing hardware, these simulations may 

require several minutes to several hours to execute and evaluate for single set of 

inputs. A technique often used to reduce this computational burden is the use of 

offline metamodeling. The goal of offline metamodeling is to develop a reasonably 

accurate metamodel of the entire solution space (objectives and constraints) or a 

particular region of interest of the solution space using as few experiments as 

possible. 

Developing a reasonable metamodel with the fewest experiments possible clearly 

emphasizes the importance of design of experiments (DOE) in selecting the 

experiments. The accuracy of the metamodel will heavily rely on the DOE method 

used. In this chapter an adaptive DOE approach for multi-input single output (or 

single response) simulations is presented. We refer to this method as the Space-
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Filling Cross Validation Tradeoff (SFCVT) method. In SFCVT, the problem of 

adaptively generating new experiments at a given point is viewed as a tradeoff 

between a “space-filling” criterion and a Leave-One-Out (LOO) error criterion.  

The remainder of this chapter is organized as follows: Section 3.2 provides an 

overview of the previous work in the area of adaptive DOE methods. Section 3.3 

explains the terminology and definitions used to describe the proposed approach. 

Section 3.4 describes the proposed approach in detail. In Section 3.5, the proposed 

approach is applied to suite of 24 numerical test problems and the results are 

discussed in detail. The proposed approach is also compared with three other DOE 

methods from the literature. An empirical procedure to allocate available function 

calls to the proposed adaptive design of experiments and to a random verification of 

the obtained metamodel is proposed in Section 3.6. The approach and results are 

summarized in Section 3.7. 

3.2 Related Work 

Several recent publications (Giunta et al., 2003, Wang and Shan, 2007; Shao and 

Krishnamurty, 2008) provide an overview of DOE methods suitable for modern 

computational engineering design. DOE methods can be classified based on two 

different criteria viz., number of stages or iterations and adaptive vs. non-adaptive 

criteria. 

Based on the number of stages, DOE methods can be classified as single-stage or 

multi-stage methods. In single-stage methods, all the required experiments are 

sampled in a single run. In multi-stage methods, also known as sequential designs 
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methods; one or more points are sampled at each stage. Generally, multi-stage 

methods with one point per stage are shown to work well overall (Romero et al., 

2006). 

DOE methods can also be classified as being non-adaptive or adaptive. In non-

adaptive DOE methods, only the information from the experiments (i.e., design or 

input space) is used. Several non-adaptive DOE methods can be found in the 

literature. Classical designs are used when physical experiments are conducted. Some 

examples of classical designs (Myers and Montgomery, 2002) include full and 

fractional factorial designs, central composite designs and Box-Behnken designs. The 

classical methods tend to allocate points on or near the boundaries of the design space 

and leave a few points in the centre. Sacks et al. (1989) and Jin et al. (2001) conclude 

that in the case of deterministic computer simulations, a good experimental design 

tends to fill the entire designs space instead of focusing only on the boundaries or at 

the center. Examples of space filling designs include Latin Hypercubes (McKay, 

1979) abbreviated as LHC, maximum entropy design (Shewry and Wynn, 1987; 

Koehler and Owen, 1996), mean squared error (Jin et al., 2002), integrated mean 

squared error (Sacks et al., 1989), maximin distance approach (Johnson et al.,1990), 

orthogonal arrays (Taguchi, 1987; Owen, 1992), Hammersley sequences 

(Kalagnanam and Diwekar, 1997) which are also known as low discrepancy 

sequences (Wang and Shan, 2007) and uniform designs (Fang et al., 2000).  

A DOE approach is said to be adaptive when the information from the 

experiments (inputs and responses) as well as information from the metamodel is 

used in selecting the next sample. Adaptive approaches are typically superior to non-
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adaptive approaches. An adaptive approach generally begins with an initial design 

chosen randomly or using some space-filling method. A metamodel is constructed 

using the initial experiments and then new samples are chosen by systematically 

evaluating the current design and the metamodel. 

The adaptive DOE approaches proposed in the literature can be classified into two 

categories: (a) DOE for globally accurate metamodels and (b) DOE for optimization 

and/or other analysis. The DOE for globally accurate metamodels are such that they 

can be used to provide metamodels which give a good estimate of the response in the 

entire design space.  On the other hand, the DOE for the optimization category, 

involves the use of metamodels but they also add new samples based on progress of 

optimization, i.e., estimation of an optimum. The various adaptive DOE approaches 

proposed in the literature use one or both of the two criteria as a basis for selection of 

new sample points, i.e.,: (a) estimate of an optima and (b) estimate of errors. Methods 

which use an estimate of the optima include the methods by Cox and John (1997) 

termed as sequential design for optimization (SDO), Watson and Barnes (1995), 

Jones et al. (1998),  Sasena, 2002, Sasena et al., 2000. These methods try to locate the 

optimum using the metamodel as each stage and sample points close to the estimated 

optimum. Methods that are based on the estimate of errors include those by Lin et al. 

(2004a, 2004b). Lin et al. (2004a, 2004b) propose to use a supplementary metamodel 

to model the prediction errors of the metamodel based on a test sample. The test 

sample is generated based on a maximum entropy principle, i.e., maximizing the 

determinant of a modified covariance matrix. They used Kriging for the response 

metamodel and multivariate adaptive regression splines for the supplementary 



 

 40 
 

metamodel of prediction errors. Their approach was applied to only one test problem 

with one design variable and one response. Further tests are necessary to evaluate the 

general applicability of their method. The method by Jin et al. (2002) is the MSD 

method and the one by Li and Azarm(2006) is the ACE method described in Chapter 

2. Goel et al. (2006) also use the prediction uncertainty in responses along with 

multiple metamodels. In their approach, multiple metamodels are used to model the 

response and then the uncertainty in the predicted response from these metamodels is 

used to choose new samples. The final predicted response is a weighted combination 

of the responses from the individual metamodels used in the DOE phase. Their 

approach was presented for single response simulations.  

Cross-validation error based methods use either the actual cross-validation error 

or the cross-validation variance. In general, a metamodel is built using the cross-

validation (CV) error or a cross-validation variance (CVV) and new samples are 

chosen based on the maximum value predicted by the CV or CVV metamodel. 

Approaches based on CV error include those by Jin et al. (2002), Busby et al. (2007) 

and the Accumulative Error (ACE) approach Li and Azarm (2006) and Li (2007), 

which use LOO errors.  

The method by Busby et al. (2007) uses an adaptive gridding algorithm which 

divides the input space into a non-uniform grid cells. For each of these grid cells, a 

CVE is calculated based on the points that already exist in the design. In the cells 

with maximum CVE, a locally optimal point is sought using the MED method. The 

grid cells that do not have any points are assigned an arbitrarily large value of CVE, 

which can result in false predictions in subsequent stages. The performance of this 
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method was compared against response surface based metamodeling techniques and 

was shown to be superior. Further numerical experiments and comparisons using 

more sophisticated metamodels are required to evaluate the method’s applicability. 

The methods by Jin et al.(2002) and Li and Azarm (2006) use a relatively simple 

approach; first to predict the cross-validation errors at different points in the design 

space and then new points are chosen based on maximum value of the predicted CV 

error. In general CV error based approaches tend to allocate points close to each other 

resulting in clustering.  The methods by Jin et al. (2002) and Li and Azarm (2006) can 

be summarized in two steps as follows: 

(a) Develop a simplified metamodel for the LOO prediction errors and scale the 

resulting LOO errors with the distance of the unobserved points from existing 

samples. 

(b) Choose new sample as the one with the maximum value of the LOO error 

calculated in Step-a. 

Jin et al. (2002) use an averaging of LOO prediction errors while Li and Azarm 

(2006) use a weighted combination. The approach by Li and Azarm (2006) is 

described in more detail in Chapter 2 (see Section 2.5.6). Methods that use CVV 

include those by Kleijnen and van Beers (2004) and Romero (2006).  Kleijnen and 

van Beers (2004) uses a supplementary metamodel of CVV and new samples are 

selected based on the maximum value of the predicted CVV. They concluded that 

their approach outperforms the LHC design and the MSE method when applied to a 

single response test problem. Romero et al. (2006) extend the approach proposed by 

Kleijnen (2004) method to multiple responses. 
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Another method from the literature is the mean squared error (MSE) method 

(Jones, 2001; Jin et al., 2002) which chooses the next sample based on the maximum 

value of the estimated mean squared error in the response predicted by an existing 

Kriging metamodel. Mathematically, 

 2
1 arg max ( )ix s x+ =  (3.1) 

where s2 is given by Equation 2.13. 

Hendrickx et al. (2006) propose a distributed computing approach for adaptive 

DOE and metamodeling, in which multiple metamodels are evaluated at each stage 

simultaneously and the best model is chosen for the next step. 

Overall, the shortcomings of the above mentioned approaches can be summarized 

as follows: (a) the methods use estimated optima and/or the estimation errors in the 

response, which can be misleading especially when the number of initial samples is 

small, (b) clustering of samples, (c) isotropic models fail to capture the response 

space and (d) scalability of the approaches to higher dimensions and a wide range of 

applications is not demonstrated (e) comprehensive comparison with other relevant 

approaches from literature. In order to address these shortcomings an adaptive DOE 

approach for single response deterministic simulations is proposed in this chapter. A 

test suite of 24 numerical and engineering problems from the literature is also 

compiled so that the applicability and scalability of the proposed approach and the 

previous DOE approaches (i.e., MED by Shewry and Wynn, 1987, MSD by Jin et al., 

2002, and ACE by Li and Azarm, 2006) can be evaluated over a range of input 

dimensions and response behaviors. The objective of the proposed approach is to 
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obtain a good estimate of the entire response space. There are many applications 

where a metamodel with reasonable accuracy in the entire design space is desired, 

such as the two cases in the following: 

(a) Multiobjective optimization:  In multiobjective optimization problems, the 

designer is not trying to maximize or minimize one particular objective 

function, but instead trying to find out a tradeoff between the multiple 

objectives. Such a tradeoff generally does not occur at the extreme values 

of the objective functions. 

(b) Multi-level design: Consider a multi-level design problem as shown in 

Figure 3.1. The system level objective f is a function of sub-system 

objectives f1 and f2 and also additional design variables. Approximation is 

used at the subsystem levels to predict the responses f1 and f2. In these 

types of design problems, the designer is not interested in the extreme 

points of the function being approximated (i.e., f1 and f2); instead the 

designer is interested in finding an estimate to a different objective 

function (i.e., f in this case). The functions being approximated may not 

contribute to the designer’s objective function in a monotonic manner 

(i.e., F may be highly non-linear) and thus the extreme point of the 

designer’s objective function f may not correspond to the extreme points 

of the functions f1 and f2 which are being approximated. A design problem 

of such nature is studied in Chapter 5. 
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System
f = F(f1,f2,xsh,x)

Sub-System 1
f1=G(X1)

X1≡[x1,xsh]

Sub-System 2
f2=H(X2)

X2≡[x2,xsh]

xsh xshf1 f2

 

Figure 3.1 Multi-level design problem 

 

3.3 Terminology 

This section introduces the specific terminology used in the proposed approach. 

3.3.1 Response Characteristics 
The response or the output of an engineering simulation can have a Continuous 

And Multi-Modal (CAMM) characteristic. Figure 3.2 shows examples of a CAMM 

and a non-CAMM region in the response space for a single-input single-output 

simulation. The response function used to generate Figure 3.2 is adapted from Li 

(2007). 
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Figure 3.2 Regions of sensitive response 
 

 An example of response which is highly multi-modal is shown in Figure 3.3. This 

plot corresponds to the Schwefel’s function (Hedar, 2005). Any adaptive DOE 

approach should be able to identify such CAMM regions in the response space. 

Intuitively, we would expect the approach to sample more points in the CAMM 

region. 
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Figure 3.3 Highly multimodal response function 
 

3.3.2 Leave-One-Out Cross-validation Error 
The method of cross-validation (Cressie, 1993; Meckesheimer et al., 2002) has 

been studied extensively. The advantage of this method is that no additional function 

evaluations, i.e., simulations calls are required. The method of cross-validation is 

used to assess metamodel accuracy given a current or existing design. At each step, 

one point is omitted from the current design and the remaining points are used to 

build a metamodel. The resulting metamodel is then used to evaluate the response for 

the omitted point and an error measure (e.g., actual error or absolute error) is 

calculated.  This cross validation error is termed as the Leave-One-Out (LOO) error. 

Let there be n experiments in a design. Then the LOO error for a point xi in the design 

can be represented as: 
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 ˆ( ) | |LOO i i ie x y y= −  (3.2) 

It is important to point out that the LOO error is a not a sufficient measure of the 

metamodel accuracy. It is actually a measure of the sensitivity or insensitivity of the 

metamodel to the lost information (Cressie, 1993). Thus an insensitive metamodel is 

not necessarily accurate. But the LOO error calculation does allow us to probe the 

response space for CAMM regions.  

An example of the LOO error calculation and the resulting metamodel response is 

shown in Figure 3.4 (adapted from Li, 2007). The true response for the function is 

also shown in the figure. The metamodel was developed with 10 sample points. Then 

the LOO error (eLOO) was calculated by omitting the point x=0.25. The resulting 

metamodel and the LOO error is shown in the figure. It is important to note how 

sensitive the metamodel is to the ‘lost information’ due to omission of the point 

x=0.25. 

Eq. (3.2) is the generally used form of the LOO error calculation in the literature. 

While it does allow us to probe the response space for CAMM regions of the 

response, the LOO error quantity is sensitive to the magnitude of the response 

surface. This issue can be addressed by using a proper normalization of the response 

values and by using these normalized values in the DOE and metamodel development 

phases. But the information required for normalization, i.e., lower and upper bounds 

on the response is not generally known apriori. To alleviate this problem, it is 

proposed to use the following definition of LOO error (i.e., relative LOO error): 

 
ˆ| |( ) i i
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Figure 3.4 LOO error calculation 
 

This relative LOO error can be intuitively much more practical, since in 

engineering design problems, a globally accurate metamodel is expected to predict 

the response as close as possible, generally with a certain error bound (e.g., with 10% 

of true value). The difference between the actual LOO and the relative LOO is shown 

in Figure 3.5 for a test problem P8 from Appendix-A. The design comprised of 20 

points and the LOO errors were calculated for these points using Equations (3.2) and 

(3.3). Note that relative LOO error is highest for a point close to (0.5, 0.5) where as 

the actual LOO error value is higher for several points, away from point (0.5, 0.5), 

especially on the boundary. Similar trends are observed for other test problems from 

Appendix-A.  
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Thus, the conventional (absolute) LOO error can be misleading and its use as a 

criterion for selecting new samples can lead to inefficient designs. In this dissertation 

the proposed relative LOO error is used and henceforth the LOO error refers to the 

relative LOO error given by Eq. (3.3). 
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Figure 3.5 LOO Error (a) Response surface for P8, (b) initial design, (c) Actual LOO 
error and (d) relative LOO error 
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3.3.3 Level of Dominance 

As mentioned in Chapter 2, all the solutions in a Pareto set are non-dominated 

with respect to each other. This notion of non-domination does not consider the 

magnitude of different objective values. In the context of multi-criteria decision 

making, Koppen et al. (2005) introduce the concept of fuzzy dominance using the 

metric termed as degree of dominance. The degree of dominance (DoD) first 

introduced in Koppen et al. (2005), is defined as follows: Let (1)f  and (2)f  be two 

objective values of two solutions in the context of a multi-objective optimization 

problem with M objectives. Then the degree of dominance of solution (1)f  over 

solution (2)f  is a constrained norm in the objective space and is defined as: 

 

(1) (2)

1
12

(1)

1

min( , )
M

i i
i

M

i
i

f f

f
μ =

=

=
∏

∏
 (3.4) 

12μ  is the amount by which solution (1) dominates solution (2). Eq.(3.4) is a 

constrained division, i.e., if any of the k
if  is zero, then the corresponding indices are 

ignored from the calculation. 21μ  can be defined in a similar manner. The above 

definition has the following interesting properties: 

(a) The degree of dominance is not symmetric between two solutions. 

(b) It is defined in the context of a set of solutions. 

(c) It is not affected by the scales of the different objectives since the same 

objectives from different solutions occur in the numerator and the 

denominator. 
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We use this concept in the context of a set of non-dominated solutions. For each 

solution in a set of n non-dominated solutions, it is proposed to define the Level of 

Dominance (LoD) iρ  for a solution i as follows: 

 
1

n

i ki
k

ρ μ
=

=∑  (3.5) 

Thus iρ  gives the sum total of the degrees of domination for a given solution and 

thus a solution with the lowest value of iρ  is the least dominated solution in the set. 

This would allow us to choose a single solution from a set of Pareto solutions. There 

are many techniques in the literature for design selection amongst Pareto solutions, 

but most of them require additional information about the designs or some kind of 

preference articulation about the different objectives. The method proposed above 

does not require any such information and can be used to choose designs based solely 

on the relative magnitudes of the objective function values. Other similar methods 

can be used as well (Deb, 2001). 

This method is used in subsequent sections when it is required to choose a single 

solution from a set of Pareto solutions obtained from solving intermediate 

optimization problems while selecting new samples. 

3.4 Proposed Cross-Validation Based Approach for Adaptive DOE 

This section describes the new proposed approach for single response adaptive 

DOE. The approach is termed as Space-Filling Cross-Validation Tradeoff (SFCVT) 

method. This approach was inspired by the work of Li and Azarm (2006) and Li 

(2007). The work reported in the literature (Jin et al., 2006; Li and Azarm, 2006; Li, 



 

 52 
 

2007) on adaptive design of experiments focuses on prediction error and distance 

based criteria. For instance, the cross validation error criterion allocates new points in 

the region(s) with high nonlinearity in the response space and can result in some areas 

of the design space with insufficient points while clustering in regions with 

nonlinearity. The model used for prediction of cross-validation errors should be 

reasonably robust and accurate otherwise the model may predict false CAMM regions 

thereby wasting precious function calls. On the other hand any approach solely based 

on the distance criterion, such as the maximin scaled distance method (Jin et al., 

2002) will most likely distribute available points across the entire design space, when 

intuitively one would expect more sample points to be allocated in regions with high 

nonlinearity or high cross validation errors. Thus, the DOE approach should 

continuously make a tradeoff between a cross-validation and a space filling (or 

distance based) criterion to sample a next point. This leads us to devise a two 

objective optimization problem where the objectives (cross-validation and space 

filling) are conflicting since they compete for the same resource (i.e., available 

functions calls). The presumption here is that the end-user of the metamodel is 

interested in the prediction capability of the metamodel over the entire design space 

and not just local or global extreme (minimum and maximum) points.  

3.4.1 Overview of Proposed Approach 

We present two different problem formulations based on the space-filling vs. 

cross validation tradeoff. The first formulation termed as the SO formulation, is a 

single-objective formulation, in which the space-filling criterion is treated as a 

constraint and the optimization objective is to find a point in the input space with the 
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highest estimated value of the LOO error. In the second formulation, termed as MO 

formulation, the space-filling criterion is treated as an objective along with cross 

validation error. Results are presented for both formulations, but only the SO 

formulation is used when comparing the SFCVT method with other DOE methods 

from literature. 

The approach starts out with an initial design. Based on this initial design, the 

LOO errors are calculated for each point in the design and a Kriging metamodel is 

developed for the LOO errors. The metamodel is then used to predict LOO errors for 

unobserved points. An additional criterion termed as “Space-filling metric” is 

introduced as well. The space filling criterion insures judicious allocation of samples 

across the entire design space with emphasis on CAMM regions. The SO or the MO 

formulation is then solved to choose the next experiment. A step-by-step description 

of the approach along with a flow chart is given in Section 3.4.8. 

3.4.2 Choice of Initial Design 
The proposed approach starts with an initial design. The purpose of having an 

initial design is to get a good representation of the CAMM regions in the response 

space. The initial design is chosen to be a space-filling design with a specified 

number of points. An implicit assumption in our approach is that the initial design 

provides a reasonable representation of the response space. Here, a space filling 

design approach such as the maximum entropy design is used; however any other 

space filling design method such as those mentioned in Chapter 2 can be used as well. 

An important factor influencing the success of an adaptive DOE approach is the 

number of points in the initial design. The number of points in the initial design 



 

 54 
 

should be a function of the problem dimension and as such is very much problem 

dependent. It is proposed that the number of points in the initial design should be half 

of the total number of available function calls. This proposition was used as a starting 

point for initial studies and will be investigated further. There is a possibility that 

some problems may require fewer number of points in the initial design (and thus 

more adaptively sampled points) and vice-versa. 

3.4.3 LOO Error Prediction 

The relative LOO cross-validation error is used in the proposed approach to 

explore the design space and sample new points. The LOO error, by definition, can be 

easily calculated for the current points in the design. But there is no way to calculate 

it for points not in the current design, i.e., unobserved points. It is proposed to 

develop a metamodel for the LOO errors based on the current design. This metamodel 

can then be used to predict the LOO error for other unobserved points. 

The metamodeling method used here is Kriging.  As described in Chapter 2, using 

a Gaussian correlation, the LOO error (eLOO) can be correlated in space using the 

following equation: 
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where 0ˆ ( )LOOe x  is the predicted LOO error for an unobserved points x0,  ( )xμ  is the 

mean of LOO errors for points in the current design, Tr  is the correlation vector 

explained in Chapter 2 and R is the correlation matrix with each term of R given by: 

 

 
1

( , ) exp( | | )
d

pl
l il jl

l
R i j x xθ

=

= − −∑  (3.7) 

In Eq. (3.7), d is the dimension of the input space, and lθ  is the correlation 

parameter along each dimension of the input space. Based on studies in the literature 

(Jones, 2001) a value of 2 is chosen for p. 

3.4.4 Space-filling Criterion 

As mentioned earlier, a purely cross-validation based approach can result in 

clustered samples in the design space. In order to avoid this clustering the use of a 

space filling criterion is proposed. This space filling metric can be based on Euclidean 

distance or the scaled distance (Jin et al., 2002) in the design space. 

The first space filling metric is the maximin distance in the design space. For each 

experiment in an existing design D, we compute the minimum non-zero distance of 

this point from all other points in D. Thus for n points, we have n non-zero distances. 

We compute the maximum of these distances and set the space filling metric to be 

equal to one-half of this maximum value. This will ensure that the new sample point 

will not be placed close to existing points in the design. This space filling metric S is 

independent of the metamodeling technique used. Mathematically, S can be 

represented as: 
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Earlier in this dissertation we proposed to use Kriging as the metamodeling 

technique.  

The space filling criterion from Eq. (3.8) is used in the SO formulation. An 

alternative space filling criterion can also be used which is dependent upon the use of 

Kriging as the metamodeling technique. This alternative space filling criterion is 

simply the mean square prediction error obtained using the Kriging predictor. The SO 

and the MO formulations for choosing the new sample are described next. 

3.4.5 Choosing Next Sample 
Once a model for eLOO and the space-filling metric have been selected, the next 

sample is chosen such that it has the maximum value of eLOO and is sufficiently far 

away from all existing points in the current design. Mathematically this can be 

represented as: 

 
1
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n LOOx
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x x S x D
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 (3.9) 

 

The problem in Eq. (3.9) tries to find out the next sample as the one with the 

maximum value of the predicted LOO error, ˆLOOe , and which is sufficiently away 

from all points in the current design. S is defined in Eq. (3.8). Due to implementation 

issues, if the problem depicted in Eq. (3.9) fails and cannot be solved, then the next 

point is chosen using the MSE method. The optimization problem may fail because 
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there are no feasible solutions remaining implying that the design space is saturated. 

The problem may also fail to solve due to implementation issues such as numerical 

rounding and ill-conditioned matrices. Note that all the candidate points in the design 

space that satisfy the constraint are treated equally with respect to eLOO. There is no 

spatial correlation taken into account. 

An alternative formulation using the mean squared error as the space-filling 

criterion is proposed as follows: 

 2
1 ˆarg max  ( ,  )i LOOx

x e s+ =  (3.10) 

This formulation uses the MSE (s2) as a second optimization objective. MSE 

allows us to account for the spatial correlation amongst different designs in different 

dimensions. Moreover, the use of s2 can be thought of as an adaptive space-filling 

design. The problem in Eq. (3.10) tries to find the next point such that it has the 

maximum value of the predicted LOO error and also has the maximum MSE. 

The formulation presented in Eq. (3.10) is an unconstrained multiobjective 

optimization problem and as such will yield a set of Pareto solutions because there is 

an inherent tradeoff between the LOO errors and MSE criteria. All the Pareto points 

can be chosen as the next set of samples (instead of one point at a time). But this may 

not result in the best design. The challenge is to select one single design at each stage. 

A single solution can be chosen based on one of the following procedures: 

(a) Amongst the Pareto solutions, choose the one with maximum value of eLOO 

or s2, i.e., one of the extreme Pareto solutions. The decision can be made 

based on the relative magnitudes of each quantity in the set. 
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(b) Choose the solution with the minimum value of level of dominance, which 

is described in Section 3.3.3 or first k solutions with lowest values. 

(c) Choose all the Pareto solutions. 

Options (b) and (c) above are useful in the context of distributed computing when 

more than one simulation can be invoked simultaneously thereby reducing the overall 

execution time. Choosing one point per stage should be most effective, but it can be 

very slow since only one simulation is invoked per iteration. 

An example of the trade off between the two objective functions, i.e., the eLOO and 

the MSE is shown in Figure 3.6 for Himmelblau’s function (Floudas et al., 1999). 

Figure 3.6a shows the actual response for the function, 3.6b shows the initial design. 

Figures 3.6c and 3.6d show the estimated eLOO and the MSE surface. Figure 3.6e 

shows the Pareto set obtained by maximizing the MSE and the LOO errors and Figure 

3.6f shows the new designs corresponding to the MSE vs. LOO error tradeoff.  It can 

be clearly seen that there is a certain amount of tradeoff between the two objectives.  

In both cases, the space filling metric ensures that the new samples are 

sufficiently away from the existing design. Note that the MSE is theoretically zero for 

points in the current design. Thus this will prevent existing points from being sampled 

again. 

The above optimization problems can be solved using a direct or exhaustive 

search technique or using a genetic algorithm and need not be solved exactly. In this 

dissertation, the exhaustive search was used for problems with two dimensions while 

a MOGA (Deb, 2001) was used for problems with more than two dimensions. 
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Figure 3.6 (a) Response for Himmelblau’s function, (b) initial design, (c) LOO error 
surface, (d) MSE response surface , (e) MSE vs. LOO Pareto and (f) new designs based 

on MSE vs. LOO Pareto 
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The end-result of adaptive sampling should result in a acceptable metamodel. 

Figures 3.7, 3.8 and 3.9 show the effect of using the above two formulations on the 

performance of the resulting metamodels. In this example we choose the test problem 

P3. The single objective (SO) SFCVT formulation is compared against the 

multiobjective formulation. For the multiobjective formulation, we choose samples 

based on the level of dominance (MO-LoD), the point closest to the origin based on 

L2 norm (MO-L2) and the two extreme (maximum MSE value, MO-Max-MSE, and 

maximum LOO error value, MO-Max-LOO) points. The initial number of samples 

for each case was 20. Additional 10 samples were added using the SFCVT method. 

Metamodels were developed and evaluated using a random sample after every two 

additional points. The metamodel based on only initial design was also evaluated, 

thus giving a total of six sample steps as shown in the figures. 
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Figure 3.7 RMSE for problem P3 
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Figure 3.8 MAE for problem P3 
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Figure 3.9 MAS for problem P3 

 

Based on Figures 3.7-3.9, it is observed that the single objective forumulation and 

the multi-objective forumuatoin with the LoD selection provide consistently better 



 

 62 
 

RMSE, MAE and MAS values. It is also seen that selecting any of the extreme points 

does not result in a good metamodel. While this behavior is strongly exhibited for test 

problem P3, this study was repeated for all other test problems (P1-P20) and it was 

found that for majority of the test problems the selection of the extreme points did not 

result in a good metamodel. For test problem P3, we also observed that selecting the 

next sample based on the L2 distance does not necessarily yield a good metamodel. 

This is because the L2 distance calculation is affected by the magnitudes and the 

distribution of the resulting Pareto solutions (MSE vs. LOO) in the MO formulation. 
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3.4.6 Design Update 

The simulation is invoked for the sample obtained in the previous step and then 

this experiment is added to the current design D. In this way, the approach can sample 

as many points as desired by the end-user. 

3.4.7 Stopping Criteria 
In real world engineering design problems, resources are limited and generally a 

limit is placed on the available number of function calls or simulation calls. This limit 

is used as the stopping criterion for the proposed approach. When computational 

resources are readily available, but still limited, an elaborate stopping criterion such 

as the steps below should be used:  

Step-1: Sample sufficient number of random points and evaluate their true 

response. These random points will be used to evaluate the metamodel 

performance. 

Step-2: During each stage of the proposed approach or during intermediate stages 

(e.g., once every 5 new samples), develop a metamodel using the current design 

and evaluate its performance against the random sampled points in Step-1. 

Step-3: If the RMSE, MAE, RRMSE, RMAE and MAS values obtained after 

predicting the response for the random samples using the metamodel are 

acceptable, stop sampling new points. 

3.4.8 Step-by-Step Description of Proposed Approach 

Figure 3.10 shows a flow chart for the proposed approach. This flow chart 

assumes that the stopping criterion used is the maximum number of available function 

calls. 
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Figure 3.10 Flow chart for the proposed single response adaptive DOE method 

 

Let Kmax be the maximum number of available function calls. The different steps 

are as follows: 

Step-1: Generate an initial design D using the MED method and the chosen 

number of initial samples. 

Step-2: Calculate LOO error for all the points in the initial design and build a 

Kriging based metamodel for the LOO errors. 

Step-3: Solve the optimization problem discussed earlier in Eq. (3.9) or (3.10) to 

obtain the next sample point. In this dissertation, both formulations are used. 

Step-4: If the optimization fails or if there are no feasible solutions, then go to 

Step-7; else go to Step-5. 
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Step-5: Evaluate the true response for the new point and add it to D. 

Step-6: If the number of points in D is equal to the available number of function 

calls, then Stop, otherwise continue to Step-2. 

Step-7: Compute the next sample using either the MED or the MSE method and 

proceed to Step-5. 

The computational complexity of this approach is discussed in Section 3.5.6 along 

with actual CPU times obtained from numerical experiments. 

3.5 Application Examples 

In this section, the proposed approach is applied to several numerical test 

problems from a test suite developed as a part of this dissertation. The problems in the 

test suite have been carefully chosen to evaluate the different aspects of simulation 

responses such as being highly nonlinear and multimodal in nature and to 

demonstrate the scalability of the proposed approach. The details (Sasena et al., 2000; 

Jin et al., 2002; Busby et al., 2007) of the test problems are described in Appendix-A. 

All of the test problems are of multi-input single-output type with the number of 

inputs ranging from two to eight. The test problems are designated as P1 through P24 

for brevity. The prefix ‘P’ is omitted in certain plots due to space restrictions. The 

Kriging implementation available in the MATLAB (Matlab, 2007) DACE Toolbox 

(Lophaven et al., 2002) was used. 

The proposed approach using the SO formulation is compared to other single 

response DOE approaches from the literature. The non-adaptive approach used for 

comparison is the MED (Shewry and Wynn, 1987; Koehler and Owen, 1996) method 
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and two adaptive DOE methods used for comparison are the MSD method (Jin et al., 

2002) and the ACE method (Li and Azarm, 2006; Li, 2007) described earlier in 

Chapter 2. The comparison is performed on the basis of metamodel predictions for a 

random test sample using a fixed number of samples (i.e., fixed number of function 

evaluations). Since random samples are used for evaluating the performance of 

resulting metamodels, the numerical experiments are repeated 10 times each to obtain 

descriptive statistics for the results. The repeat count of 10 was chosen based on 

available computational resources. The descriptive statistics are presented in the form 

of a box plot (McGill et al., 1978), also known as a box and whisker plot.  

The test matrix used for conducting numerical experiments is shown in Table 3.1. 

The table shows the test problem numbers, the problem size i.e., input dimension or 

number of inputs, the number of points in the initial design, the number of new 

sampled points, number of random test points used and the number of runs conducted 

for repeatability. The initial design was generated using the MED method. The SO 

formulation from Eq. (3.9) and the MO formulation Eq. (3.10) were used to obtain 

new sample points and the performance of resulting metamodels were compared. 

When comparing the proposed approach with those from the literature, only the SO 

formulation was used. The metamodel acceptability threshold MASε was set to 0.1 

(i.e., 10%) for the lower as well as upper bound. 
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Table 3.1 Test Matrix for Comparison 
 

Test 
Problems 

Problem 
Input 

Dimension 

Initial 
Design 

New 
Samples 

Random 
Test 

Samples 

Repeat 
Runs 

P1-P16 2 20 20 2000 10 
P17-P20 4 40 40 4000 10 
P21-P24 8 80 80 8000 10 

 

A Factor of Improvement metric is introduced to compare metamodel 

performance and to visualize the comparison results as described next. 

3.5.1 Metamodel Comparison: Factor of Improvement 
The accuracy of two metamodels can be compared by calculating the relative 

reduction in RMSE or MAE between the two models as follows: The Factor of 

Improvement (FoI) for metamodel RMSE of the proposed approach over another 

baseline approach is defined as: 

 Baseline Proposed BaselineRMSE FoI=(RMSE - RMSE ) 100/RMSE×  (3.11) 

Thus, a positive FoI indicates that the ‘Proposed’ metamodel is superior to the 

‘Baseline’ metamodel. Similarly, FoI for MAE, RRMSE and RMAE can be defined. 

Clarke et al. (2005) propose a similar metric based on using the standard deviation of 

the RMSE instead of the actual values. 

3.5.2 Results for the Proposed Approach 

The MAS of the proposed approach using the SO formulation are shown for the 

different test problems in Figures 3.11 and 3.12. Figure 3.11 shows the MAS values 

for all the test problems for one single numerical experiment. Figure 3.12 shows the 
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descriptive statistics for MAS, obtained after conducting the numerical experiments 

10 times.  

We observe from Figure 3.11 that 16 out of 24 test problems have a score of less 

than 50. One reason for this is that a fixed correlation was used for Kriging 

metamodels. The type of test problem is not known a priori and thus there is no way 

to choose a best suited correlation except by trial and error. 

The plot shown in Figure 3.12 needs some explanation. The plot is termed as a 

box plot and shows the following five parameters in order: minimum value, 1st 

quartile, median, 3rd quartile and the maximum value. Thus from Figure 3.12, the 

vertical line in the box is the median value. Outliers are represented by the “+” signs 

on either end of the minimum or the maximum values. 
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Figure 3.11 MAS for designs from the proposed SFCVT approach 

 

Figure 3.13 shows the comparison of the MAS values obtained using the two 

different formulations, i.e., the SO and the MO formulations.  The level of dominance 
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criteria was used to select one point at a time for the MO formulation. It can be seen 

that the two formulations yield comparable results (MAS within ±5) for 17 out of 24 

test problems. Figure 3.14 shows MAS comparison for the two formulations, when 

extreme points are selected at each stage. Again, 17 out of 24 test problems show 

comparable results. The corresponding RRMSE and RMAE values (not shown here) 

for the two formulation are also comparable. The MO formulation can be used when 

multiple sample points are desired per stage, which can then be evaluated 

simultaneously taking advantage of parallel computing. 
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Figure 3.12 MAS for the proposed SFCVT approach 
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Figure 3.13 MAS of the SO and MO formulations, using LoD as selection criterion in 
MO formulation 
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Figure 3.14 MAS comparison of the SO and MO formulation, using Extreme points 
criteria in MO formulation 
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The RMSE, MAE, RRMSE and RMAE plots results for the proposed approach 

are shown in the following sections where the SFCVT method is compared with three 

methods from the literature. The SO formulation was used for this comparison. In 

cases where results are presented in the form of box plots, conclusions are drawn 

based on the median values shown in the box plot. In some cases, when all values in a 

box plot are very close, the entire plot appears as only one horizontal or vertical 

(based on plot orientation) line. 

3.5.3 Comparison with MED Method 

In this section, the proposed approach is compared with the MED approach 

(Shewry and Wynn, 1987). In order to ensure a fair comparison, the number of initial 

designs and the total number of designs was fixed. Numerical experiments were 

carried out as per the test matrix presented in Table 3.1. The results for MAS for the 

MED method and the proposed SFCVT method are shown in Figure 3.15. In this 

comparison it can be observed that the proposed approach outperforms (i.e., yields 

higher MAS) the MED method in terms of MAS in 11 of 24 test problems. Figure 

3.13 shows the box plot for MAS values for the MED method. The horizontal length 

of the boxes is small, indicating a consistent performance of the MED method on the 

random sample points used for verification. Upon further investigation it was found 

that the default correlation function used in the SFCVT method for the LOO error 

prediction was not suitable i.e., it did not give a good prediction of the LOO errors. 

Changing the correlation to an exponential function (see Chapter 2) improved the 

results dramatically for test problem P4, P5, P9 and P14-P16. 
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Figures 3.17, 3.18, 3.18 and 3.20 show the RMSE FoI, MAE FoI, RRMSE FoI 

and RMAE FoI of the proposed SFCVT method over the MED method. The proposed 

approach was better in terms of RMSE for 15, in terms of MAE for 16, in terms of 

RRMSE for 16 and in terms of RMAE for 18 out of 24 test problems. These numbers 

were obtained based on the median values from Figures 3.17-3.20. We can define the 

term “strictly better” for FoI, when all the values represented by the box plot are 

greater than 0. Thus, the proposed approach performed strictly better than the MED 

method in terms of RMSE for 10, in terms of MAE for 12, in terms of RRMSE for 11 

and in terms of RMAE for 13 out of 24 test problems.   The proposed approach faired 

the worst on problem P10. Upon further investigation, it was found that the 

metamodel for the LOO errors was not sufficiently accurate and as a result only the 

space-filling methods (i.e., MED and MSD) showed an acceptable metamodel. 

Moreover, it was observed that for problem P10, the LOO error metamodel was 

sensitive to the initial maximum entropy design sample and as such never yielded a 

good model for the LOO errors in intermediate stages, ultimately resulting in an 

inferior design. Further studies on initial design were conducted for problem P10. It 

was found that if LHC design is used as the initial design or even if the prior variance 

and correlation parameters were changed for the MED method to generate initial 

design, the resulting metamodel has a better performance than that obtained using the 

MED method. 
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Figure 3.15 MAS comparison for MED vs. SFCVT 
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Figure 3.16 MAS for MED approach 
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Figure 3.17 RMSE FoI of proposed approach over MED method 
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Figure 3.18 MAE FoI of proposed approach over MED method 
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Figure 3.19 RRMSE FoI of proposed approach over MED method 
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Figure 3.20 RMAE FoI of proposed approach over MED method 
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In Figures 3.17-3.20, the width of the box plots for some of the test problems is 

very long, e.g., P21 in Figure 3.17. This indicates that the number of repeat runs was 

not sufficient and more numerical experiments need to be conducted. 

The problem P10 is further analyzed here.  Figure 3.21a and 3.21b show the 

design generated using the MED and the SFCVT methods, respectively. The 

corresponding verification error (i.e., absolute value of the difference between actual 

and predicted response) plots are shown in Figures 3.21c and 3.21d for MED and 

SFCVT respectively. For this case, the MAS for SFCVT is much lower than that for 

MED. We now tweak the correlation parameter θ used in the MED method. The new 

designs are shown in Figure 3.22a and 3.22b. The corresponding error scatters are 

shown in Figures 3.22c and 3.22d for MED and SFCVT respectively. Note that even 

though the overall MED design hasn’t changed significantly, the design generated 

using the SFCVT method is drastically different and its performance is now 

comparable to that of the MED method. This shows that for certain problems, the 

SFCVT approach is sensitive to the initial design. 
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Figure 3.21 Problem P10, (a) MED design, (b) SFCVT design, (c) absolute error using 
MED and (d) absolute errors using SFCVT 
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Figure 3.22 Problem P10 with modified initial design, (a) MED design, (b) SFCVT 
design, (c) absolute error using MED and (d) absolute errors using SFCVT 

 
 

3.5.4 Comparison with MSD Method 
In this section, the proposed approach is compared with the MSD method (Jin et 

al., 2002). Again, the number of initial designs and the total number of designs was 

fixed. The results are shown in Figures 3.23-3.28. 

From Figure 3.23, we see that the proposed approach outperforms the MSD 

method  in only 6 out of 24 test problems. The performance improvement of the MSD 

method over the proposed SFCVT method in terms of MAS is small, except for 

problems P7, P9 and P10. Figure 3.23 shows the box plots for MAS values obtained 
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from the MSD method. Figures 3.25, 3.26, 3.27 and 3.28 show the RMSE FoI, MAE 

FoI, RRMSE FoI and RMAE FoI of the SFCVT approach over MSD method. Based 

on the median values, the SFCVT method performs better than MSD method in 12 

out of 24 problems for RMSE, 11 out of 24 for MAE, 13 out of 24 for RRMSE and 

13 out of 24 for RMAE. 

The LOO error model issue for problem P10, described in previous section is 

present in this case as well. Only the MSD and the MED methods work well on 

problem P10. 
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Figure 3.23 MAS comparison for MSD vs. SFCVT 
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Figure 3.24 MAS for MSD method 
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Figure 3.25 RMSE FoI of proposed approach over MSD method 
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Figure 3.26 MAE FoI of proposed approach over MSD method 
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Figure 3.27 RRMSE FoI of proposed approach over MSD method 
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Figure 3.28 RMAE FoI of proposed approach over MSD method 

 

3.5.5 Comparison with ACE Method 
The proposed approach is also compared with the ACE method (Li and Azarm, 

2006; Li, 2007). Due to programming issues with the available ACE implementation, 

the comparison could only be carried out for problems with two input variables. 

Figure 3.29 shows the comparison of MAS for the SFCVT and the ACE method. It 

can be observed from Figure 3.29 that the proposed SFCVT approach has better MAS 

than that of ACE method for 11 out of 16 test problems. The other FoI plots are 

shown in Figures 3.30 – 3.33. Again, based on median values, the SFCVT method 

performs better than the ACE method in 11 out of 16 problems in terms of RMSE, 11 

in terms of MAE, 10 in terms of RRMSE and 11 in terms of RMAE. 
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Figure 3.29 MAS comparison for ACE vs. SFCVT 
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Figure 3.30 RMSE FoI of proposed approach over ACE method 
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Figure 3.31 MAE FoI of proposed approach over ACE method 
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Figure 3.32 RRMSE FoI of proposed approach over ACE method 
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Figure 3.33 RMAE FoI of proposed approach over ACE method 

 

The proposed approach is also applied to a real-world engineering design problem 

which focuses on the research and development of the next generation of air-cooled 

heat exchangers. The details and the results for this engineering example are 

discussed in Chapter 5. 

3.5.6 Effect of Initial Design 
In this section we briefly study the effect of the number of points in the initial 

design. For any given problem, there are an optimal number of points that should be 

present in the initial design. While this number cannot be arrived apriori for black box 

functions, in this section we study the effect of the number of points in the initial 

design for a fixed number of total available function calls. The effect of the choice of 

the initial design can also be studied. 
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The MED method is used to generate initial samples. The total number of sample 

points is fixed at (20×d), where d is the problem dimension. Numerical experiments 

are conducted starting with 5d and 10d as the number of samples in the initial design. 

The verification of the resulting metamodels, expressed using MAS, RRMSE and 

RMAE are shown in Figures 3.34-3.36 below. 
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Figure 3.34 MAS comparison for 5d and 10d points in initial design 
 

Figure 3.34 shows that for certain problems (e.g., problems 5,7 and 10) the fewer 

number of points in the initial design results in a better metamodel, thus pointing out 

that more adaptive samples are necessary to capture function behavior in the CAMM 

regions. The metamodels for other problems (e.g., 4, 5, 9 and 17) perform better with 

a higher number of samples in the initial design. This is because a lower number of 

initial samples are not sufficient to capture all the CAMM regions in the response 

space. Similar behavior is observed for RRMSE and RMAE as shown in Figures 3.35 

and 3.36 respectively. 
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Figure 3.35 Metamodel RRMSE for 5d and 10d points in initial design 
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Figure 3.36 Metamodel RMAE for 5d and 10d points in initial design 
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3.5.7 Scalability to Higher Dimensions 

The SFCVT method was also applied to test problems with higher dimensions. 

Four test problems with scalable closed form expressions were chosen. The single 

objective formulation was used. The 16 and 24 dimensional versions of test problems 

P3 (Dixon-Price function) and P5 (Griewank function) were used. The test problems 

are described in Appendix-A. The MAS values were compared with those obtained 

using the MED method and the MSD method. The comparison is shown in Figure 

3.37. The MAS values are very comparable for test problem P3 for 16 dimensions, 

but for other test problems, the SFCVT method performs worse than the MED and 

the MSD method. This can be explained by the fact that the test problems are highly 

multi-modal as such the method gets trapped into a subset of the CAMM regions. For 

such functions (e.g., Griewank function), a space-filling approach is better suited. It 

should be pointed out that the function behavior is assumed to be unknown. 
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Figure 3.37 MAS comparison when SFCVT method is applied to higher dimension 
problems 
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3.5.8 Comments on Computational Effort 

The computation time for the proposed SFCVT approach is dominated by the 

LOO error calculation and the optimization problem which is solved to arrive at the 

next sample. Note that in the LOO error calculation, the correlation parameters are re-

estimated for every point in the current design.  

In general, for the same number of function calls, any adaptive DOE approach 

will require more computation time than a non-adaptive approach. In order to 

generate the same number of new samples, the SFCVT method requires on average 

twice as much time as the MED, MSD or the ACE method. While, for the test case 

considered, the comparison is made for the same number of function calls, but at the 

end of the sampling process the resulting metamodels have differing accuracies. For 

example, it is observed that the SFCVT method performs better (in terms of its 

accuracy for the same number of function calls) on test problems with non-symmetric 

CAMM regions (e.g., test problems P1, P3, P6, P8), where as for test problems with 

multiple distributed and symmetric CAMM regions (e.g., test problems P4, P7, P10) a 

space filling (i.e., non-adaptive approach) is better suited. As such, for test problems 

with non-symmetric CAMM regions, SFCVT method will require less computational 

effort to arrive at a globally accurate metamodel. 
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3.6 Empirical Procedure for Function Call Allocation 

In this section we propose an empirical procedure for resource allocation for 

single response adaptive DOE method. The resource refers to the available number of 

function calls. 

3.6.1 Problem Statement 
In practical applications, the number of available function calls is limited. These 

function calls need to be used for DOE phase and metamodel verification. Thus a 

systematic method is required for the allocation of function calls, either for 

metamodel development (i.e., adaptive sampling) or for random verification. 

This problem can be greatly simplified if some information about the behavior of 

the function is known before hand. As with the assumptions earlier, we assume that 

no information about the function is available a priori. 

3.6.2 Proposed Empirical Procedure  
The proposed empirical procedure is based on the notion that as more and more 

samples are added to a design, the performance of the metamodel does not improve 

proportionately. In other words, the metamodel is already at its best (i.e., no 

improvement in MAS, RMSE, MAE etc.) and new samples do not add any new 

information to it. 

The procedure starts out with a set of inputs from the designer. The inputs 

required are the maximum available function calls (Kmax) , minimum number of 

points to be used for verification (Nv) and the minimum required MAS (MAScrit). It is 

implicit that the procedure has access to the simulation tool to carry out the required 
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function evaluations. Let d be the problem dimension, i.e., the number of inputs 

variables, D be the current design. Note that D is initially empty. 

The different steps are explained below. 

Step-1: Accept the inputs Fmax and Nv. Set counter k =0. 

Step-2: Generate random test points and evaluate their true response. Update 

counter k. 

Step-3: Generate initial design using MED or other suitable method and evaluate 

the true responses. The number of points in the initial design is set to 

 2 ( 1) ( 2) / 2Ninit d d= + + × +  (3.12) 

 

The reason for using Eq. (3.12) is as follows: the second term in Eq. (3.12) is the 

number of points required in a second order polynomial regression equation which is 

used in the response mean calculation in Kriging. The first term (i.e., 2) ensures that 

during LOO error calculation, the resulting regression is a valid least-squares system. 

Step-4: Use the adaptive DOE method proposed earlier to generate d additional 

points.  

Step-5: Develop a metamodel using the current design and then evaluate its 

performance using the random points generated in Step-2. Compare its performance 

with metamodel in previous iteration. If (k+d) > Kmax, then STOP. If this is the first 

iteration, then go to Step-9. If the current MAS is greater than the previous MAS and 

if the current MAS is greater than MAScrit, then go to Step-6 else go to Step-7. 
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Step-6: If (k +d) > Kmax), then STOP, else Sample d new points randomly and add 

them the to the verification design. Go to Step-10. 

Step-7:  Calculate the LOO errors and the standardized residual for the current 

design. If the number of points with a standardized residual greater than 3, is more 

than two, go to Step-8, else go to Step-9. The standardized residual is just the ratio of 

the cross-validation error and the mean error predicted by Kriging. 

Step-8: Sample d new points using the MED or other suitable space-filling 

method and compute the corresponding responses. Update D with the newly 

generated d points. Go to Step-10. 

Step-9: Sample d new points using the adaptive DOE method and compute their 

response. Update D with the newly generated d points. 

Step-10:  Update counter k, k = k + d.  If (k < Kmax), go to Step-5 else STOP. 

3.6.3 Numerical Experiments 
 

The procedure is applied to the test problems P1 through P16. The numerical 

experiments are conducted 20 times, using the following parameters, Kmax = 60, Nv = 

20, MAScrit = 50. The MED method was used to generate the initial design and the 

adaptive DOE method proposed in section 3.4 is used to adaptive sample new points. 

The results are shown in the form of a box plot. Figure 3.38 shows the distribution of 

the number of points used in developing the metamodel. In 10 out of 16 test 

problems, all available points were used for adaptively sampling new points. This is 

because, the criteria for acceptance of the metamodel was too strict (MAScrit = 50). 
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Figure 3.41 shows the number of points used in verification. The sum of points in 

Figures 3.40 and 3.41 for each case must be equal to Kmax. 
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Figure 3.38 Points used for developing metamodel 
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Figure 3.39 Points used for verification 
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Figure 3.40 Resulting MAS for test problems 

 

Figure 3.40 shows the MAS for the resulting metamodels. Again, it is observed 

that the resulting metamodels fall short of the prescribed MAS criteria on several test 

problems. As a result, the procedure never samples additional points for verification. 

 

3.7 Summary 

An adaptive DOE approach for single response deterministic simulations is 

developed based on the tradeoff between cross-validation errors and space-filling 

criterion. The proposed approach is based on the premise that at each stage during an 

adaptive DOE procedure, a tradeoff has to be made between allocating new sample in 

a region of the design space that is sparsely sampled and allocating a new sample in a 

region where the response is estimated to be multi-modal, non-smooth or noisy. The 

proposed approach uses the concept of cross-validation error, specifically leave-one-

out error to probe the response space for sensitive regions. It also uses a space filling 

metric to identify the sparsely populated regions of the design space. Two different 

space filling metrics are used. First, the concept of maximin distance is used; wherein 
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all the dimensions of the input space are treated equally and only a Euclidean distance 

is used as a criterion. This gives us the SO formulation for the DOE problem. Second, 

the MSE is used as a space filling metric resulting in a multiobjective optimization 

problem, termed as the MO formulation. The advantage of MSE is that the distances 

in each dimension are weighted and the use of this metric is suitable when Kriging is 

used as the metamodeling approach. The maximin distance metric can be used with or 

without the Kriging metamodeling approach. The MO formulation of the proposed 

approach can provide one or more samples at each stage. This has the advantage of 

being able to sample more points, hence more information from the design and 

response space, in the same amount of clock-time. This is especially useful when the 

approach is used along with a parallel computing framework.  

The proposed approach is applied to suite of numerical and engineering test 

problems comprising of 24 single response functions from the literature. When 

comparison the results obtained using the SO and the MO formulation, it was found 

that they both yield comparable results. The SO formulation is then compared with 

three methods from the literature. The results show that the proposed approach 

outperforms the maximum entropy design (MED) method and two additional 

adaptive DOE methods, the MSD and the ACE method from the literature, in most of 

the test problems with regards to MAS, RMSE and MAE. Numerical experiments are 

conducted several times to gather statistical results. 

The proposed approach relies on a good set of starting designs that represent the 

design space reasonably well. Based on the numerical experiments it is observed that 

starting with an excessive number of initial designs (thereby less adaptive designs for 
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fixed number of function calls) actually results in an inferior metamodel. It is also 

observed that in certain cases, the starting design may never yield a good metamodel 

for the LOO errors, causing the approach to fail. 

In the next chapter an adaptive DOE method for multiresponse deterministic 

simulations is presented. 
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Chapter 4 Multiresponse Adaptive Design of Experiments 
 

4.1 Introduction 

This chapter proposes a new adaptive DOE method for multiresponse 

deterministic computer simulations. 

Many real world engineering simulations are characterized by multiple inputs and 

multiple outputs. The simulation models are complex, generally iterative in nature 

and yield all output values in a single execution, i.e., when a simulation is executed 

with a set of inputs, all the outputs are calculated simultaneously. These outputs or 

responses, in the context of design optimization, may be objective values, constraint 

values, design attributes or simply other outputs of interest from the simulation. Naive 

application of approximation-assisted optimization to such a simulation would 

involve developing a metamodel for each response separately. In other words, for 

each output an adaptive DOE approach is used to create a set of samples. These 

samples may not be the same for each output, thus wasting a large number of function 

calls. In order to alleviate this problem, multiresponse approximation models (Li et 

al., 2006; Li, 2007; Romero et al., 2006) have been proposed in the literature. As 

opposed to single response approximation methods, multiresponse approximation 

methods, as the name implies, try to simultaneously achieve metamodels for multiple 

outputs using a minimum number of function calls. In this chapter, the problem of 

adaptive DOE for multiple responses is posed as a multiobjective optimization 

problem, where there is a tradeoff between allocating samples for improving the 

metamodel performance for one response vs. another. The proposed approach is 
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termed as Multiresponse Space-filling Cross-Validation Tradeoff (MSFCVT) method.  

It is shown that the proposed approach performs better than the previous methods 

presented in the literature when applied to the same test problems. 

The remainder of this chapter is organized as follows: Section 4.2 provides a 

detailed literature review on existing techniques for multiresponse approximation, 

Section 4.3 describes the proposed approach. Section 4.4 demonstrates the 

applicability and scalability of the proposed approach by applying it to a range of test 

problems from the literature and comparing its performance against previous DOE 

methods. 

  

4.2 Literature Review 

There are two aspects in multiresponse approximation. First is the simultaneous 

DOE for multiple responses. The DOE method must sample new points such that they 

improve the performance of the metamodels for all responses at the same time. 

Second is the metamodel development, in which we can develop one metamodel for 

each response or we can develop a multiresponse metamodel for all responses 

simultaneously. In this section brief overview of metamodeling techniques for 

multiresponse approximation is presented followed by a review of adaptive DOE 

techniques. Even though the DOE is the first step in approximation, we first present 

the metamodeling techniques and then the DOE, since DOE is the focus of this 

chapter. 

As discussed in Chapter 3, numerous approximation techniques have been 

introduced in the literature for single response approximation. The underlying 
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assumption of these metamodeling techniques is that the engineering design 

simulation generates a single response i.e., scalar output. Many complex engineering 

simulations yield multiple responses in a single execution, i.e., for a single set of 

inputs a single set of outputs (or responses) is generated. One can treat each of these 

responses as being an output of a single simulation and then construct a DOE and a 

metamodel for each of the responses, which is a fairly common approach. 

Some research has been conducted to handle multiple responses in a 

computationally efficient manner, though the literature on multiresponse adaptive 

design of experiments is sparse. The problem of simultaneously handling multiple 

responses has been addressed for regression methods by combining the multiple-

responses into a “value” function (Chiao and Hamada, 2001; Derringer and Suich, 

1980). An extension of Kriging, termed as Cokriging (Ver Hoef and Cressie, 1993) 

has been proposed to handle multiple responses. Romero et al. (2006) propose a 

multiresponse meta-modeling approach based on the use of covariance matrix of the 

responses. This is very similar to the Kriging method, where the predicted output is 

now a vector with more than one element. They also propose an extension to the 

MED method, termed as the modified MED (MMED) method, to handle multiple 

responses.  The covariance matrix in the MMED method is based on the 

multiresponse covariance function (Romero et al., 2006) of the underlying 

metamodel. A dependent metamodeling (DMM) approach (Li et al., 2006) was also 

proposed, wherein instead of developing a metamodel in which each response is a 

function of the input design variables, the response is assumed to be a function of the 

input designs variables as well as other responses. This results in a system of 
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nonlinear equations (metamodels) that needs to be solved to evaluate the multiple 

responses. The DMM technique implies that the DOE for each response should be 

constructed such that it includes the input design variables as well as the other 

responses. Based on these inferences, Li et al. (2006) also include an extension of the 

maximum entropy design method to include the response space. We term this 

approach as the MED for dependent metamodel. Li et al. (2006) applied their 

approach to examples with two input variables and two responses. Further testing of 

the method by Li et al. (2006) is necessary to evaluate the general applicability of 

their approach.  

Romero et al. (2006) proposed an adaptive DOE approach for multiresponse 

approximation. Their approach is similar to the Kriging approach, but the covariance 

function is a multivariate Gaussian function which accounts for the multiple 

responses. The resulting covariance matrix includes contributions from the multiple 

responses as well. To complement this metamodeling technique, they proposed two 

adaptive sampling schemes. The first technique is an extension of the maximum 

entropy sampling method (i.e., MMED), wherein the augmented covariance matrix is 

replaced by the new covariance matrix from Romero et al.’s (2006) method. Second, 

the Kleijnen and van Beers (2004) approach of maximum cross-validation variance 

(MCVV) is extended to include multiple responses. In single response case, the 

Kleijnen and van Beers (2004) approach finds the next sample as the one that 

maximizes the cross-validation variance while in the multiple response case, Romero 

et al. (2006) propose to use the trace of the cross-validation covariance matrix for the 

multiple responses. The trace calculation and hence the approach requires that the 
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responses be scaled properly in order to be effective. Romero et al. (2006) applied 

their approaches to 3 test problems (with 2 inputs – 1 response) and for multiresponse 

case; they selected two single response test problems to mimic multiple responses. 

Their studies found that the modified MED method outperformed the MCVV method. 

They used 3 test problems in their numerical experiments and the conclusion was that 

optimal Latin-hypercube (LHC) as initial sampling technique along with their 

proposed adaptive MED method results in metamodels that are more robust and 

accurate or better than other sampling approaches. The MCVV method needs to be 

applied to additional test problems with multiple inputs and outputs to evaluate its 

general applicability. 

Based on the literature so far, the existing approaches for multiresponse adaptive 

DOE suffer from the following drawbacks: (a) scaling and/or normalization of inputs 

and responses, which is not very intuitive especially when the design problem is not 

known before hand, (b) the approaches have used multiresponse metamodels and no 

comparison has been made to single response metamodels with multiresponse DOE 

(c) general applicability is not known, i.e., the approaches have not been applied to a 

broader set of numerical or engineering design problems with more than two inputs 

and responses. In this chapter a new adaptive DOE method for multiple responses is 

proposed which extends the LOO error and the space filling criteria defined in 

Chapter 3 to multiple responses. The proposed multiresponse approach is applied to a 

total of 10 test problems from the literature. Two of these test problems are from Li et 

al. (2006) and Romero et al. (2006) and are used for comparison against published 

literature. 
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4.3 Multiresponse Adaptive DOE Approach 

In this section we provide the details of the proposed approach. As mentioned in 

Chapter 3, an adaptive DOE approach has to make a tradeoff between allocating 

experiments in sparsely sampled areas versus allocating experiments in regions 

corresponding to the CAMM regions of the response space. In Chapter 3, these two 

aspects were handled using a LOO error metric and a space-filling criterion. In the 

proposed approach for this chapter the same concept is extended to multiple 

responses. In a multiresponse case, the tradeoff is not only between the LOO error 

and the space-filling criteria, but also between the LOO errors for the individual 

responses.  

The different steps in the proposed approach are described in the following 

sections. A detailed flow chart of the entire procedure is explained in Section 4.3.8. 

4.3.1 Overview of the Proposed Approach 
The proposed approach starts with an initial design. The purpose of this initial 

design is to provide preliminary information about the response space. Based on the 

initial design, LOO errors are calculated for each response and a metamodel built for 

LOO errors corresponding to each response. As mentioned in Chapter 3, the LOO 

error calculation used in this dissertation is the relative LOO error defined in Chapter 

3. A constrained multiobjective optimization problem is then formulated which aims 

at finding points in the design space that simultaneously have the maximum value of 

the LOO error for each response and are at the same time sufficiently away from 

existing points in the current design, D. The solution to this multiobjective 

optimization problem is a set of Pareto points from which a single point is chosen as 
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the next sample. The single point is chosen based on the criterion described in Section 

4.3.5. The newly chosen point is then evaluated for its true response and is added to 

the current design D. The procedure is repeated, starting with the LOO error 

calculation followed by choosing the next sample, until a stopping criteria is reached 

(e.g., such as the maximum number of function calls is reached). The details of 

individual steps are described in the following sections. 

4.3.2 Choice of Initial Design 

As mentioned in Chapter 3, the initial design is crucial to the success of an 

adaptive DOE strategy and the resulting metamodel. In the proposed approach, it is 

recommended to use the MED method to generate an initial design. Again, the reason 

for using the MED method is to have a good representation of the entire input space.  

The number of points in the initial design is influenced by the size of the problem as 

well as the response behavior. Since the response behavior is not known a priori, we 

use (10×d) as the number of points in the initial design, where d is the problem 

dimension (i.e., number of input variables). 

4.3.3 LOO Error Calculation 
In Chapter 3 it was proposed to use a Kriging based LOO error prediction model 

for the response. In case of multiple responses, we extend our earlier single-response 

approach to include a LOO error model for multiple responses. The metamodeling 

technique for this LOO error model is Kriging. We can use multiple single response 

Kriging models, a multiresponse Kriging model or the Cokriging method (see Section 

4.2). We use multiple single-response Kriging metamodels as opposed to a 

multiresponse Kriging model. In other words, the LOO errors for each response are 
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calculated separately and one metamodel for LOO errors corresponding to each 

response is developed. The difference is that when individual metamodels are used, 

the correlation parameters are calculated for each response separately. In 

multiresponse Kriging, there is only one set of correlation parameters for all the 

responses, resulting in less accurate metamodels. The Gaussian correlation discussed 

in Chapter 2 is used for Kriging, but other correlations can be used and in some cases 

may be required due to the nature of the responses.  

4.3.4 Space-filling Criterion 

The space filling criterion is similar to the one proposed in Chapter 3. The metric 

S is defined as follows: 

 2( ) min(|| || ) ,  ( )

0.5 max( ( )),
i i j i

i i

ds x x x x D i j

S ds x x D

= − ∀ ∈ ∧ ≠

= × ∀ ∈
 (4.1) 

4.3.5 Choosing Next Sample 
As mentioned in Chapter 3, the problem of choosing the next sample point is a 

tradeoff between allocating of the experiment in a CAMM region (with higher LOO 

error values than other regions) or allocating the sample in a sparsely sampled region 

of the space (indicated by the space filling metric). In order to extend this to multiple 

responses, we choose the LOO errors for different responses as the tradeoff values 

subject to the space filling metric constraint. This is mathematically represented as 

follows: 

 1

2

ˆarg max   1,...,

            s.t. || ||   

j
n LOOx

k k

x e j m

x x S x D
+ = =

− > ∀ ∈
 (4.2) 
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Note that the above optimization problem is an MOOP and thus will generally 

yield a set of Pareto optimal solutions.  The challenge then is to select one or more 

points to conduct experiments. There are different methods that can be used to choose 

the next samples as follows: 

(a) Choose all the Pareto points. This would involve sampling a large number 

of points in each stage. 

(b) Choose points from the Pareto set that have the highest value of the LOO 

error for a given response, implying a preference or affinity towards one 

particular response.  

(c) An extension of (b) is to choose all points from the Pareto set that have the 

highest predicted LOO error values for each of the responses, resulting in 

(at most) m points being sampled per stage, where m is the number of 

responses. 

(d) Use a more elaborate technique such as level of dominance approach 

described in Section 3.3.3. 

An example of the above mentioned tradeoff between the LOO errors for different 

responses is shown in Figure 4.1. Figures 4.1a and 4.1b show the response surfaces 

for a 2-input 2-output numerical example. The initial design is shown in Figure 4.1c. 

The LOO errors are calculated for all points in the design space and using a non-

dominated sorting algorithm, a Pareto set is found as shown in Figure 4.1d. As seen 

from Figure 4.1d, clearly there is a tradeoff between the LOO errors for the two 

responses. The corresponding LOO error surfaces for the two responses are shown in 
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Figures 4.1e and 4.1f. We observe that the LOO error surfaces are nonlinear and 

multimodal in nature. 

The problem in Eq. (4.2) can also be formulated as an unconstrained optimization 

problem as shown in Eq. (4.3). 

 2
1 ˆarg max[ , ]   1,...,j

n LOO jx
x e s j m+ = =  (4.3) 

The above formulation essentially tries to maximize 2m objectives, where m is the 

number of responses. The formulation presented in Eq. (4.2) is helpful when Kriging 

is used as the metamodeling technique and when individual metamodels are built for 

each response, because the Kriging predictor also calculates the value of s along with 

the predicted response. 
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Figure 4.1 LOO error tradeoff, (a) Response surface for y1, (b) response surface for y2, 
(c) initial design, (d) y1 vs. y2 LOO error tradeoff, (e) LOO error surface for y1, and (f) 

LOO error surface for y2 
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4.3.6 Design Update 

The new point or points selected in Section 4.3.5 are evaluated for their true 

responses and added to the current design D. 

4.3.7 Stopping Criteria 

The stopping criteria in this case can be one or more of the following: 

(a) Maximum number of function calls 

(b) Acceptable error measure (i.e., RMSE, MAE) or performance criteria such as 

MAS (described in Chapter 2), for one or more responses based on an existing 

test sample of randomly generated points. 

(c) Acceptable value for the norm of an error measure, e.g., the maximum value 

of MAE amongst all responses, based on a test sample. 

Generally in practical applications, the maximum number of available function 

calls is used as the stopping criterion and the same is used in this dissertation. 

4.3.8 Step-by-Step Description of the MSFCVT Approach 
Let Kmax be the maximum number of available function calls. The different steps 

are as follows: 

Step-1: Generate an initial design D with predefined number of samples using the 

MED method. 

Step-2: Calculate LOO errors for all responses for all the points in the initial 

design and build the Kriging based metamodel for the LOO errors. 

Step-3: Solve the optimization problem discussed in Eq. (4.2) or (4.3) to obtain 

the next sample(s). 
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Figure 4.2  Step-by-Step flow chart for MSFCVT approach 
 

Step-4: Check if the optimization problem in Step-3 is solved. If the optimization 

fails, or if there are no feasible solutions go to Step-7, else go to Step-5. 

Step-5: Evaluate the true response for the new point(s) and add it to D. 

Step-6: If the number of points in D is equal to the available number of function 

calls, then Stop, otherwise continue to Step-2. 

Step-7: Compute the next sample using either the MED or the MSE method and 

proceed to Step-5. 
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4.4 Application Examples 

In this section, we apply the proposed approach to several numerical and 

engineering test examples from the literature and from the test suite developed as a 

part of this dissertation to evaluate its applicability and scalability to a wide range of 

problems. 

The metrics of MAS, RMSE, MAE, RRMSE, RMAE and the FoI are calculated 

individually for each response. 

4.4.1 Numerical Example-1 
The first numerical example is taken from Li et al. (2006) as a challenging test 

problem for multiresponse approximation. We note that the response y2 in Eq. (4.4) is 

basically the product of x1 and a highly nonlinear function (Farhang-Mehr and 

Azarm, 2005) which was described in Chapter 3. This makes the problem 

challenging. The problem is a two-input two-response test problem with a closed-

form expression and is shown in Eq. (4.4). 
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 (4.4) 

The corresponding response surfaces for y1 and y2 are shown in Figure 4.3.  

The total number of designs was fixed at 20 for a fair comparison with the DMM 

(Li et al., 2006; Li, 2007) design and RMSE reported in Li et al. (2006). The 

MSFCVT design was generated starting with an initial design of 10 points using the 

MED method and then adaptively sampling 10 additional points, one point at a time. 
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A set of 2000 randomly generated points (i.e., test sample) was used for metamodel 

verification. The corresponding designs and response surface for the MED and the 

DMM (Li et al., 2006) method are shown in Figures 4.4 and 4.5 respectively. The 

numerical experiments are repeated 10 times to reduce statistical bias and thus for 

each metamodel performance metric, we have a range of values. As in Chapter 3, a 

box plot (McGill et al., 1978) is used to concisely display the results. 
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   (a)      (b) 

Figure 4.3 Responses for numerical example -1 from Eq. (4.4), (a) Response for y1, and 
(b) Response for y2. 

 

From Figure 4.4a., we observe that the points generated using the MED method 

try to fill the space rather uniformly while the MSFCVT samples (Figure 4.4b) are 

more concentrated in the lower left of the x1-x2 space.  This can be explained based on 

the irregular behavior of the second response (y2) shown in Figure 4.3b. The response 

surfaces generated using the metamodels are also shown in Figure 4.4. We observe 

that the response surface for y1 closely resembles its true response surface shown in 

Figure 4.3a. 
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Figure 4.4 MED vs. MSFCVT approach, resulting designs and the response surfaces 
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In case of y2, the response surface generated using the MSFCVT based 

metamodel more closely resembled the true response surface. These observations are 

further supported by the metamodel performance metrics for the corresponding 

responses. We also note that the response y1 is a simple function and as such after 20 

samples, the metamodel performance is more than adequate for response y1, as the 

MAS values are 100 for metamodels resulting from both the MED and the MSFCVT 

methods. 

Figure 4.5 shows the published design generated using the DMM (Li et al., 2006) 

method and that generated by the MSFCVT method. The design from the MSFCVT 

method is the same as from Figure 4.4. The DMM (Li, et al., 2006) method on the 

other hand appears to sample points away from the center of the design space, close 

towards the corners. We also observe that the metamodel for response y1 is near 

perfect from both the DMM and MSFCVT methods. As for response y2, again it can 

be seen that the generated response surface from MSFCVT more closely resembles 

the true response surface than the one from DMM (Li et al., 2006) method. 

The MAS, RRMSE and RMAE comparisons presented in Figures 4.6, 4.7 and 4.8 

in the form of box plots. Figure 4.6 shows the box plots for the MAS obtained using 

the different methods for the two responses. The RMSE, RRMSE and RMAE 

obtained from the 3 methods for the two responses y1 and y2 are shown in Figures 4.7 

and 4.8 respectively. Figure 4.9 shows the relative errors for the randomly selected 

test points (for 1 run) plotted as a scatter in the design space.  

From Figure 4.6, it can be seen that all the three methods viz. MED, DMM and 

the proposed MSFCVT yield a near perfect (i.e., MAS = 100) metamodel for y1. But 
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the MSFCVT approach also provides better RMSE and MAE values for the resulting 

metamodels as compared to DMM and MED method as seen from Figure 4.7. For y2, 

based on the median MAS values, we see that the MSFCVT approach performs better 

than the MED and the DMM (Li et al., 2006) approach. 

Based on median values (indicated by the vertical line within each box) from 

Figure 4.8, we observe that the proposed approach outperforms the DMM approach in 

terms of RMSE, RRMSE and RMAE, but is inferior to MED method when RRMSE 

and RMAE are considered. From Figure 4.5, we see that the MSFCVT method 

allocates more points in the lower left region of the design space. The resulting 

metamodel from MSFCVT has a better performance in this region which is verified 

by the corresponding distribution of errors as a function of test points as shown in 

Figure 4.9.  
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Figure 4.5 DMM vs. MSFCVT, resulting designs and metamodels 
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Figure 4.6 MAS Comparison, (a) Response y1 and (b) Response y2 
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Figure 4.7 RRMSE, RMAE and RMSE FoI values for y1, from different methods  
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Figure 4.9 Error distribution for y2, (a) DMM method, and (b) MSFCVT method 

 

The RMSE for y2 as reported in Li et al. (2006) for the DMM method is 0.11 

while the RMSE obtained from the proposed approach is 0.045, thus supporting the 

conclusion that the proposed approach outperforms the DMM method for this 

example. 

4.4.2 Numerical Example – 2 
This second numerical example is taken from Romero et al. (2006) to allow for a 

fair comparison with the results published in the literature. This test example is a 
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combination of two single-response test examples to represent a multiresponse 

simulation. It has two inputs and two outputs. The two test problems are Osio’s 

Function and Sasena’s function, designated as P9 and P8 respectively and their details 

are provided in Appendix-A. 

Similar to the first example in the earlier section, the proposed approach is applied 

to this test problem. The approach starts out with 9 initial designs and a total of 19 

designs.  The number of design points was chosen to be 19 to allow comparison with 

results published in Romero et al. (2006). A set of randomly generated 2000 test 

points is used for metamodel verification. Changing the number of verification points 

to other values (i.e., 1000, 5000) resulted in a similar metamodel performance. 

The true response surface for these two examples is shown in Figure 4.10a and 

4.10b respectively. Figure 4.11 shows the design obtained using the MED and the 

MSFCVT methods and the corresponding response surfaces for the two responses. 

From Figures 4.11a and 4.11b, we observe that the designs generated using the MED 

and the MSFCVT methods appear to be space-filling in nature, but only the MED 

points are space-filling. The corresponding metamodel generated response surfaces 

are shown in Figures 4.11c and 4.11d respectively. The surface generated for y1 using 

the MSFCVT method resembles more closely to the true response surface. In case of 

y2, both methods do not represent the surface very well. 
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   (a)     (b) 
Figure 4.10 Response surfaces for Numerical Example-2, (a) response y1, and (b) 

response y2 

One reason for y2 not being represented very well, is the initial design. If more 

number of points were to be added to the initial design, the predicted response 

surfaces would be closer to the true surfaces. 

The corresponding metamodel performance metrics are shown in Figures 4.12, 

4.13 and 4.14. Figures 4.12 and 4.13 show the actual RMSE and MAE for the two 

methods (i.e., MED and MSFCVT) for responses y1 and y2 respectively. Figure 4.14 

shows the MAS for the two responses. Based on Figures 4.12, 4.13 and 4.14, we 

observe that the MSFCVT approach outperforms the MED method for response y1, 

but is marginally inferior with respect to y2.  
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   (c)     (d) 
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   (e)     (f) 
Figure 4.11 Numerical Example-2, (a) MED design, (b) MSFCVT design, (c) MED 

response y1, (d) MSFCVT response y1, (e) MED response y2, (f) MSFCVT response y2 
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Figure 4.12 Comparison of RMSE and MAE for response y1 
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Figure 4.13 Comparison of RMSE and MAE for response y2 
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Figure 4.14 MAS Comparison for y1 and y2 from MED and MSFCVT approaches 
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Comparing the above results with those published in Romero et al. (2006), we 

observe that the MSFCVT approach provides a better MAE than the three approaches 

they proposed. 

4.4.3 Application to Numerical Test Problems 
In this section, a suite of 8 test problems, designated at PM1 to PM8, was 

complied based on test problems from the literature. The details of this multiresponse 

test problem suite are given in Appendix A. In general, several single-response test 

problems are combined to represent a multiresponse computer simulation. A 

summary of the numerical experiments that were conducted is shown in the table 

below. 

Table 4.1 Test Matrix for Multiresponse Adaptive DOE Method 
 

Test 
Problem 

Number of 
Inputs 

Number of 
Outputs 

Initial 
Design 

New 
Samples 

Random 
Test Points 

PM1 – PM2 4 2 40 40 4000 
PM3 – PM4 8 2 80 80 8000 
PM5 – PM6 2 4 20 20 2000 
PM7 4 4 40 40 4000 
PM8 8 4 80 80 8000 

 

Each of the test problems (i.e., PM1 to PM8) has multiple responses. We use the 

notation PM-1 to indicate the first response for test problem PM1, PM1-2 the second 

response for problem PM1 and so on. 

The first set of results is the comparison of MAS obtained using the two different 

selection strategies for the MSFCVT method using Eq. (4.2). The first selection 

method is based on the level of dominance approach and selects one point per stage. 

The second selection method chooses the extreme Pareto points at each stage (i.e. 
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method (c) described in Section 4.3.5). The comparison is shown in Figure 4.15 for 

problems PM-1 to PM-4 and in Figure 4.16 for problems PM5-PM8. 
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Figure 4.15 MAS comparison for MSFCVT method, choosing 1 point vs. 2 points per 
stage, for problems PM1 - PM4 
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Figure 4.16 MAS comparison for MSFCVT method, 1 point vs. 2 points per stage, for 
problems PM5 – PM8 
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From Figure 4.15, for test problems PM1 to PM4, we observe that there is 

marginal difference between the MAS using the two methods. On the other hand, in 

the 4-output problems (i.e., PM5-PM8) there is significant difference in MAS for 

responses PM5-4, PM6-1, PM6-3, PM6-4, PM7-1 and PM7-3. Overall the 2 points 

per stage method works better than 1 point for problems PM6 and PM7. This is 

mainly because, at each stage, 4 new points are added (as opposed to one point in the 

1 point per stage approach), which also increases the accuracy of the intermediate 

LOO error models for each of the responses. This results in a better overall 

metamodel even, when the total number function calls is the same. The RMSE and 

MAE results were comparable for the two responses and hence are not shown here. 

Based on these test problems, the proposed MSFCVT method was compared with 

the MED method and the results are discussed next. The comparison with the MED 

method is based on using 1 point per stage for the MSFCVT method. The MAS for 

the resulting metamodels are shown in Figure 4.17.  The proposed approach provides 

strictly better MAS for both responses for 2 out of 4 test problems. The corresponding 

FoI results for RMSE, MAE, RRMSE and RMAE FoI are shown in Figure 4.18. 

Except for the second response of problem PM3, the proposed approach performs 

comparably and in some cases even better (e.g., PM1) than the MED method. 
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Figure 4.17 MAS for MED vs. MSFCVT method for 2 response case 
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Figure 4.18 MED vs. MSFCVT, FoI values for 2 response cases 
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Figure 4.19 MAS, MED vs. MSFCVT method for 4 response cases 
 

The remaining 4 test problems (PM5-PM8) are problems with 4 responses. The 

results for these are shown in Figures 4.19 and 4.20. From Figure 4.19, in all the test 

problems, except for PM6, the proposed MSFCVT approach performs comparable to 

or better than the MED method. Overall, based on the MAS values, the MSFCVT 

approach gives better metamodels for 10 out of 16 responses. For PM6, from 

Appendix-A, we note that the 4th response is the Busby et al.(2007) problem (PM10) 

for which we concluded from Chapter 3 that the implemented SFCVT approach does 

not work well, because of weak metamodels for the LOO errors in intermediate 

stages. Consequently, the MED method performs significantly better in terms of 

MAS as seen from the bars for PM6-4 in Figure 4.19. 

From Figure 4.20, we observe that the MSFCVT approach gives better RMSE, 

MAE, RRMSE and RMAE for 7 out of 16 responses and it yields better RRMSE and 

RMAE in 11 out of 16 responses. 
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Figure 4.20 MED vs. MSFCVT, FoI for 4 response cases 
 

It is important to point out that the test problems PM5-PM8 used the single 

response test problems from Chapter 3 to mimic a multiresponse simulation and the 

default implementation of the MSFCVT method was used. Thus, the performance of 

the MSFCVT method when compared with MED method will be similar to that 

observed for the single response cases. 

4.4.4 Comparison Between Formulations 

In this section we briefly present and compare the results obtained using the two 

different formulations given by Eq. (4.2) and (4.3). Note that there are m objectives in 
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the formulation presented by Eq. (4.2), where as there as 2m objectives in the 

formulation presented in Eq. (4.3), where m is the number of responses. Figure 4.21 

shows the MAS obtained by applying the two formulations to test problems PM1-

PM4. For both formulations, the extreme Pareto points were chosen as the next 

samples. For the first response, the m objective formulation seems to yield better 

MAS than the second formulation. Except for test problem PM-1, the two 

formulations yield close results for the other 3 test problems. It should be noted that 

even though extreme Pareto points corresponding to each objective are selected, the 

number of unique samples is not the same as the number of objectives. In other 

words, when we select extreme points for n conflicting objectives, we should have n 

solutions. But when some of them are not conflicting (which we don’t know before 

hand), then the extreme points for two or more objectives coincide. Thus the number 

of unique samples chosen is not the same as the number of problem objectives. 
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Figure 4.21 Comparison of MAS for test problems PM1-PM4, for MSFCVT 
formulation with m objectives vs. 2m objectives 
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The results for the test problems with four responses, i.e., test problems PM5-

PM8, are shown in Figure 4.22. The MAS values are mixed (low or high for different 

responses) for test problems PM5-PM7, while for problem PM8 the results for all 

responses are comparable. 
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Figure 4.22 Comparison of MAS for test problems PM5-PM8 for MSFCVT formulation 
with m objectives vs. 2m objectives 

 

Application to additional test problems is necessary to draw any generalized 

conclusions with regards to the two formulations. 

4.5 Summary 

In this chapter a new adaptive design of experiments approach for multiresponse 

computer simulations is presented. The approach extends the concept of the tradeoff 

between a space-filling criteria and the LOO error proposed in Chapter 3 to multiple 
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responses. In this case, the constrained formulation is used to choose the next sample, 

but now there are multiple, generally competing, objectives. One or more points can 

be chosen as next samples. The new sample chosen needs to a strike a balance 

between improving the metamodels for all the different responses simultaneously vs. 

improving metamodels for individual responses. Alternatively, all the Pareto points 

could be chosen as the next samples. While this approach will utilize more function 

calls per stage, it will give a better representation of the response space in the early 

stages. The drawback of choosing all Pareto points at each stage is the possibility that 

the new points will be allocated much closer to existing samples. The third option to 

select new samples from the obtained Pareto set is simply to choose the extreme 

points. This will result in the selection of multiple samples per stage with the number 

of samples equal to the number of responses. 

The proposed approach is compared with two multiresponse numerical examples 

from the literature. The first test problem is from Li et al. (2006) and it was found that 

the proposed approach outperforms the DMM method proposed by the Li et al. when 

applied to their particular test problem.  The approach was also compared against 

published results for three other multiresponse adaptive DOE approaches proposed by 

and applied to one test example in Romero et al. (2006). Only the MAE data was 

available and it was found that the MSFCVT approach generates design which result 

in better metamodels than those published in Romero et al. (2006). The proposed 

approach was compared to the MED method for a suite of 8 test problems. It was 

found that the proposed MSFCVT method outperforms the MED method in majority 

of the test problem responses. 
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In the next chapter, we present an approximation based framework for the multi-

level performance evaluation of novel heat exchangers and apply the single and the 

multiresponse adaptive DOE approaches to the heat exchanger design problem.  
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Chapter 5 Approximation Based Optimization Framework for 
Design of Novel Heat Exchangers 

5.1 Introduction 

In this chapter, a new framework for the multi-level performance evaluation and 

design optimization of air-cooled heat exchangers is presented. The framework uses 

metamodels for CFD simulations, using the adaptive DOE approach developed in 

Chapter 3 for design optimization of novel air-to-refrigerant heat exchangers. 

Heat Exchangers (HX) are used to transfer energy from one working fluid or 

medium to another using a temperature gradient as the driver. The working fluids can 

be air, water, glycols or other refrigerants such as R134a. Air-to-refrigerant heat 

exchangers are widely used today in refrigeration and Air-Conditioning (AC) 

applications.  The use of these heat exchangers include: (a) Indoor and outdoor coils 

for residential and commercial buildings such as houses, offices, super markets (b) 

the condenser, radiator and the evaporator in an automobile air cooling system (c) the 

coil on the back or bottom of a household refrigerator, (d) charge air coolers and 

intercoolers in vehicles etc.  Most of the cooling equipment is based on the 

thermodynamic cycle termed as the vapor compression cycle or some variation of it. 

In general, any vapor compression cycle based equipment requires a minimum of two 

heat exchangers. In a basic vapor compression cycle there are four components viz. 

(a) compressor, (b) high-pressure heat exchanger, termed as condenser (c) an 

expansion device and (d) a low pressure heat exchanger termed as evaporator. 

Together, the two heat exchangers in an AC unit account for the more than 50% for 

the initial cost (manufacturing cost, also known as the first cost) and significantly 
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affect the performance and hence the energy consumed by the unit. In mobile 

applications, the weight of these heat exchangers also plays an important role in 

addition to the first cost, since it affects the fuel efficiency of the vehicle. 

In the light of energy efficiency and energy conservation concerns, there is a 

growing need for more compact, high performance heat exchangers and ever present 

requirement to minimize cost. In the last decade a significant increase in compactness 

has been achieved in air-to-refrigerant heat exchangers by replacing the traditional 

round-tube plate fin heat exchangers with microchannel heat exchangers. 

The optimization framework proposed in this chapter aims at developing a novel 

tool for multi-level design optimization of new heat exchangers, termed as the next 

generation heat exchangers (NGHX). The novel aspects of this approach are (a) to use 

simplified 2D CFD to evaluate performance of novel heat exchanger elements and (b) 

to develop and use an ε-NTU based heat exchanger model to evaluate component 

level performance of the novel heat exchanger elements and (c) to use the adaptive 

DOE approach developed in Chapter 3 to optimize the design of these novel heat 

exchangers. Together, these novel aspects will lead to better heat exchanger designs 

which are more compact than the current state of the art, as will be shown in this 

chapter. More explanation is needed to highlight the multi-level performance 

evaluation aspect of this research. In (a) above, the performance of a small heat 

exchanger element is evaluated using 2D CFD. These elements are then “assembled” 

together to form real life heat exchangers and a ε-NTU based model is used to 

evaluate the component level (i.e., heat exchanger as a whole) performance of these 

heat exchangers. 
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The remainder of this chapter is organized as follows: Section 5.2 provides some 

background information on heat exchangers and their optimization. Section 5.3 gives 

a summary of literature which focuses on the use of approximation assisted 

optimization for heat exchanger design. Section 5.4 provides details about a new heat 

exchanger geometry that will be analyzed in this chapter. Section 5.5 summarizes a 

novel approach for the multi-level performance evaluation of the new heat exchanger. 

Section 5.6 applies the adaptive DOE methods developed in Chapters 3 to the heat 

exchanger design problem. Section 5.7 provides results from the approximation 

assisted optimization for the NGHX. Finally Section 5.8 summarizes this chapter. 

5.2 Background information 

In this section, background information on conventional air-to-refrigerant heat 

exchangers in presented. An introduction to an ε-NTU based simulation tool (i.e., 

CoilDesigner) for performance evaluation of tube-fin and microchannel heat 

exchangers is also presented. 

 

5.2.1 Tube-Fin Heat Exchangers 
Tube-fin heat exchangers (ARI, 2001) generally refer to round tube bundles with 

fins. The fins help improve the air-side heat exchange area. A schematic of a tube-fin 

heat exchanger is shown in Figure 5.1. 
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Figure 5.1 Schematic of a tube-fin heat exchanger 
 

In tube-fin heat exchangers, tubes are arranged in a bundle across fins. The tubes 

are arranged from top to bottom in vertical banks, normal to the direction of the air 

flow. The refrigerant (e.g., water) flows through the tubes and heats or cools the air 

based on the application. The fins mounted on the tubes are used to extend the heat 

transfer area since the air side heat transfer coefficient is much less than the 

refrigerant side heat transfer coefficient. For simplicity, the details of fin patterns are 

not described here. 

A general observation from Figure 5.1 is that there is a significant obstruction to 

the air flow due to the tubes. The nominal size of this obstruction in the air path is the 

same as the tube diameter. Any improvement in this air flow path should increase the 

performance of the heat exchanger. Using this concept as one of the foundations, the 

new heat exchanger technology conceived after tube-fin heat exchangers were heat 

exchangers with flat tubes. Flat tubes later enabled the microchannel heat exchanger 

which is described next. 
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5.2.2 Microchannel Heat Exchangers 

A schematic of a microchannel heat exchanger is shown in Figure 5.2. A 

microchannel heat exchanger (Kays and London, 1984; Kandlikar et al., 2006) 

comprises of corrugated fin sheets sandwiched between flat tubes. Each tube has tiny 

(~ 1 mm) circular or rectangular ports through which the refrigerant flows. 

Microchannel heat exchangers are generally fed using an inlet and an outlet header. 

The division of each tube into multiple parallel flow channels greatly reduces the 

pressure drop on the refrigerant side. Several novel fin designs (e.g., louver fins) are 

available which drastically improve the air-side performance as well. The first view 

in Figure 5.2 is the coil face area, which is the area of the coil which ‘sees’ the air 

first. 
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Figure 5.2 Schematic of a microchannel heat exchanger 
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5.2.3 CoilDesigner 

CoilDesigner (Jiang et al., 2006) is a control volume based simulation tool that 

can simulate the performance of air-to-refrigerant and refrigerant-to-refrigerant heat 

exchangers. The underlying solver allows for the decomposition of individual tubes in 

a heat exchanger into smaller heat exchanger elements termed as ‘segments’.  

CoilDesigner internally uses this decomposition along with the ε-NTU method (Shah 

and Sekulic, 2003) of heat transfer calculations which helps to account for the drastic 

changes in transport properties (density and viscosity) during evaporation and 

condensation processes resulting in accurate prediction of heat exchanger 

performance. The methodology behind CoilDesigner is described in more details 

along with experimental validation in Jiang et al. (2006), Schwentker et al. (2005) and 

more recently in Singh et al. (2008). Optimization of tube-fin coils using MOGA with 

CoilDesigner has been described and demonstrated in Aute et al. (2004). It is 

important to note that CoilDesigner uses correlations for air and refrigerant side heat 

transfer and pressure drop calculations. This makes CoilDesigner very flexible, 

because once a correlation is available for a given tube/fin geometry, CoilDesigner 

can be used to simulate the coil performance using the particular tube/fin geometry. 

Correlations are generally based on experimental data sets, but in cases where 

experimental data is not available (e.g., for new heat exchangers), the heat transfer 

and pressure drop characteristics can be obtained using a detailed CFD simulation. 

In order to evaluate performance of heat exchangers, CoilDesigner requires 

detailed geometrical and design information such as tube diameters, thickness, fin 

thickness, tube horizontal and vertical spacing, tube length, number of parallel tubes, 

etc. The results predicted by CoilDesigner include the overall heat load, refrigerant 
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side heat transfer coefficients (HTC), refrigerant side pressure drop (RDP), outlet 

refrigerant and air conditions, the volume of heat exchanger, material weight etc. 

5.3 Literature Review 

Conventional heat exchangers such as tube-fin and microchannels have been very 

well studied and as such there is plenty of literature which focuses on the 

optimization of these heat exchangers. In terms of design optimization of novel heat 

exchangers, the literature focuses only on the optimization of a small element or a 

segment of the heat exchanger. The published research can also be classified to fall in 

the category of shape optimization, because the research mainly focuses on the 

optimization of a fin or a tube shape. Heat Exchanger optimization can be carried out 

at the element level (i.e., small segment of heat exchanger is analyzed), at the 

component level (i.e., an entire heat exchanger is optimized for a given performance) 

and at the vapor compression system level (i.e., heat exchanger geometries are 

optimized as a part of system optimization). While there is ample literature available 

on optimization of heat exchangers based on thermal-hydraulic models, the literature 

review presented here is limited to the application of approximation assisted 

optimization with evolutionary algorithms to the design optimization of novel heat 

exchanger geometries.  

The use of CFD based optimization is fairly common in the aerospace field. Early 

examples of CFD based optimization in the aerospace field include the classical 

aerofoil optimization (Falco, 1997; Makinen, et al., 1998) problem. CFD based 

optimization is yet to spread in the heating, ventilation and the air-conditioning field, 
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and remains an area of active research. Hilbert et al. (2006) use MOGA and CFD to 

optimize the shape of a tube-fin heat exchanger tube for maximum heat exchange 

while obtaining minimum pressure loss. The candidate shapes were represented via 

parameterized NURBS (Farin, 1999, 2002) and their approach used CFD coupled 

with optimization with no approximation involved. The resulting tube designs, similar 

to aerofoil shape, were highly unconventional yet intuitive.  

Langer et al. (2002) propose an approach for shape optimization using 

parameterized CAD geometry and evolutionary algorithms. They use MATLAB as 

the integration platform. The optimization algorithm generates new design values for 

the inputs required for a parameterized geometry which is then built by a CAD 

program followed by FEM analysis for performance evaluation. While the integration 

approach is novel, there was no approximation used and actual FEM runs were 

carried out using a parallel cluster of computers. 

Perez-Segarra et al. (2002) conducted CFD studies on conventional tube-fin heat 

exchangers to assess the reliability of the numerical solutions obtained from the CFD 

codes. 

Kanaris et al. (2004) propose the use CFD for the design of novel flow channels 

for plate heat exchangers. In their study, the CFD results are first validated against 

experimental data for known channel geometries. Then, new geometries are explored 

in a parametric fashion in order to find better flow channels. A more recent 

application is presented in Park et al. (2006), in which Kriging and CFD is used for 

optimization of a heat sink. 
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Based on the available literature, it can be concluded that detailed CFD analysis 

and optimization is carried out only on a case-by-case basis, i.e., for fixed geometries. 

Moreover, the CFD analysis was carried out at the element level and no studies have 

been conducted to evaluate the scalability of the performance at the component (i.e., 

heat exchanger) level. There is no systematic method or framework for the analysis of 

novel heat exchangers. Morever, approximation assisted optimization is seldom used 

for CFD based heat exchanger optimization.  

5.4 Novel Heat Exchanger Concepts 

Heat exchanger design optimization is in general a very broad problem and it is 

important to narrow down the problem definition. As a starting point for the search of 

NGHX, it is important to develop new heat exchanger concepts. These concepts can 

then be analyzed further using CFD and approximation assisted optimization. 

After a comprehensive literature review, a workshop to brainstorm for new heat 

exchanger configurations was conducted (Radermacher et al., 2007). The result of 

this workshop were a of set 25 novel heat exchanger configurations, each with its 

own geometry variations. Some of the sample geometries are shown in Figure 5.3 

below. The arrows in Figures 5.3a and 5.3b indicate direction of the air flow. 

5.4.1 Potential Geometries 
In order to finalize potential geometries for further analysis, several designs were 

brainstormed based on creativity. Without going into the details of these designs, 

some basic designs were chosen for detailed analysis. These detailed designs are 

derived from the concept of microchannel heat exchangers and are based on the 
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notion of augmenting the heat transfer area per unit external volume of heat 

exchangers. 

                   

  (a)      (b) 

 

(c) 

Figure 5.3 Concept heat exchanger geometries, Courtesy : NGHX Project 
(Radermacher et al., 2007), (a)  and (b) multiport staggered configurations, (c) circular 

ports with fin sheet 
 

5.4.2 Chosen Geometry 
The heat exchanger geometry chosen for further analysis is shown in Figure 5.4. 

This geometry has several round tubes connected by thin sheets that act as a fin. Note 

that compared to traditional heat exchangers such as tube-fin (reviewed in Section 

5.2.1) and microchannels (reviewed in Section 5.2.2), this geometry does not have 

any fins, though the metal webs connecting the individual tubes act as fins. 

Preliminary analysis (Radermacher and Azarm, 2007) showed that this geometry is 
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capable of packing more heat transfer area per unit external volume of the heat 

exchanger per unit material weight of the heat exchanger as compared to traditional 

microchannel heat exchanger, when port diameter is less than 0.4mm. The defining 

dimensions of the geometry are inner diameter (Din), horizontal spacing (Hs), vertical 

spacing (Vs) and the length (L) and depth (w). 

 

 
(a) 

 

Din Horizontal 
Spacing

Air

 
 

(b) 
Figure 5.4 Proposed NGHX Geometry, (a) 2-D view, (b) 3-D view 
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Note that for simplicity we choose the geometry with circular flow channels (i.e., 

ports). The same geometry can be extended to include any other arbitrary port shapes. 

 

5.4.3 Performance Evaluation Criteria  

Several criteria for the comparison of heat exchangers have been discussed in the 

literature (Shah and Sekulic, 2003; Webb and Kim, 2005). These criteria are mainly 

based on thermodynamic characteristics of the heat exchanger. The particular 

criterion of interest is the VG criteria (Webb and Kim, 2005) in which heat 

exchangers are sized for a required thermal heat load with a specified flow rate. In 

this case study, as the title implies, we want to find the next generation of air-cooled 

heat exchangers and as such a more practical comparison criteria was chosen. The 

two criteria that were chosen were the total heat exchanger volume and the air-side 

pressure drop for the heat exchanger for a given heat duty. A 1 kW air-to-water 

microchannel heat exchanger was used as a baseline heat exchanger for comparison. 

The baseline microchannel was designed with CoilDesigner using the best performing 

tube and fin surface configurations. The inlet air and water conditions (pressure, 

temperature) and the flow rate are fixed.  

 

5.5 Performance Evaluation and Design Optimization Approach 

In this section, a new approach for multi-level performance evaluation of novel 

air-cooled heat exchangers is presented. First, the underlying assumptions are listed, 

followed by the details of the proposed approach.  
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5.5.1 Assumptions 

The assumptions underlying this analysis are as follows: 

(a) The heat exchangers can be represented as cross-flow air-to-refrigerant 

heat exchangers as shown in Figure 5.4. A single tube can have multiple 

ports in the air-flow direction and a heat exchanger is comprised of 

multiple tubes. 

(b) The working fluids are air, on the outside, and water in the tubes. While 

the proposed approach is applicable for other fluids such as R134a instead 

of water, the corresponding analysis is much more complex and will 

include two-phase flow for which heat transfer and pressure drop 

correlations are still in development. Furthermore, the CFD simulation of 

two-phase flows is still an open research problem. Hence water is used to 

demonstrate the concept. 

(c) The performance analysis is carried out for heat exchangers comprising of 

single banks only, i.e. one set of tubes from top to bottom. 

(d) The performance evaluation criteria are the ones described in Section 

5.4.3. Furthermore, the new designs are compared to a baseline 

microchannel coil that can deliver the same performance.  

(e) The header volume and header performance (i.e., flow mal-distribution) is 

ignored in this analysis and as such while comparing the coil face area, 

coil volume and material volume, the headers are ignored. 
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(f) A CFD package (Fluent, 2005) will be used for any performance 

calculations that require CFD analysis. 

(g) In the current analysis, the tube’s inner wall is assumed to have a constant 

temperature for the length of the segment that is being analyzed using 

CFD.  In an actual heat exchanger, each segment of the heat exchanger 

will have a different tube-wall temperature. Numerical experiments were 

conducted and verified that this assumption does not have a significant 

effect on the calculated air-side heat transfer performance for the given 

range of input conditions. 

5.5.2 Hybrid Performance Evaluation Approach 
In order to evaluate the performance of a novel HX design, there are two main 

methods: (a) build a prototype and test it in the laboratory and (b) model the HX with 

a detailed simulation tool such as finite element method (FEM) or computational fluid 

dynamics (CFD). CFD in turn can be carried out as a two dimensional (2D) or three 

dimensional (3D) analysis based on the geometry. The method of building a 

prototype for each design is not feasible due to resource and time constraints, which 

leaves us the CFD approach. 

The evaluation of a novel heat exchanger with the current simulation technology, 

i.e., with 3D CFD requires significant computational effort (e.g., several days to 

weeks) to evaluate a single assembled heat exchanger. 3D Analysis will also add an 

additional dimension i.e., tube length, to the problem. 

The proposed hybrid approach aims at reducing the time required to analyze the 

performance of novel heat exchanger elements by an order of magnitude. This 
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approach uses 2D CFD for a small number of cases to evaluate the heat transfer 

coefficients and pressure drops. 

The high level steps in the approach can be summarized as follows: 

(a) Evaluate the air-side performance of a small periodic (repeating) heat 

exchanger element using 2D analysis. HX performance requires simultaneous 

analysis of fluid flow inside the tubes and the air-flow over the tubes. Here the 

assumption is that the tube-side performance is readily available, as is the case for 

most applications. If the tube-side performance is not readily available, a 3D analysis 

on the tube-side can be conducted to get the performance. Single phase fluid flow in 

microchannels has been widely investigated (Morini, 2006; Abdelaziz et al., 2008) 

and it was verified that the conventional correlations are still valid for heat transfer 

and pressure drop calculations. 

(b) Use the performance evaluated in step (a) in an ε-NTU based tool such as 

CoilDesigner to assemble heat exchangers and evaluate its performance.  The new 

heat exchanger element parameters can then be optimized based on the performance 

of the assembled heat exchanger. 

Thus, we evaluate the performance of the novel HX element at the finite level and 

use the finite level performance information along with CoilDesigner to model the 

performance of an entire HX, i.e., macro level. This points out the multi-level aspect 

of the proposed approach. 

The air-side performance, i.e., air heat transfer coefficient (HTC) and air pressure 

drop (DP), is evaluated for a small segment of a heat exchanger for a fixed tube inner-
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wall temperature. It has been shown that the fixed tube inner-wall temperature 

assumption does not have a significant impact on the calculated air-side heat transfer 

coefficient values. The use of fixed tube inner wall temperature also implies that we 

do not need to account for the flow inside the tubes and this reduces the 

computational effort greatly. 

A CoilDesigner model is developed that can evaluate the performance of the new 

heat exchangers. This new model can use the air-side performance evaluated earlier 

and calculate the overall performance of a heat exchanger. In a separate study 

(Abdelaziz et al., 2008) , it was shown that the conventional correlations for water 

side heat transfer and pressure drop calculations are valid for the novel heat 

exchanger geometry that was analyzed in this chapter. 

5.5.3 Geometry Representation and Parameterization 
Typically all CFD tools follow a three step procedure (Versteeg and 

Malalasekera, 1995) as follows: (a) Preprocessing (geometry development, meshing 

and boundary conditions setup), (b) Processing (solving the governing equations) and 

(c) Post processing (result analysis and plotting). In the geometry development phase, 

a 2D model (for 2D analysis) or a solid model (for 3D analysis) is developed. For fast 

performance evaluation in batch mode, the geometry should be parameterized such 

that by changing a set of key parameters, the shape of the geometry can be tweaked. 

An example is shown in Figure 5.5. By changing the dimensions a and b, the shape 

can be changed from a circle to an ellipse and vice-versa. 
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(a)    (b) 
 

Figure 5.5 Simple shape representation and manipulation 

 

The analyses of these geometries require perimeter and cross section area 

calculations. While such calculations are trivial for simple shapes like a circle or a 

square (as shown in Figure 5.6a), these calculations can be very challenging and time 

consuming for more complex shapes (the ones shown in Figure 5.6b). Therefore a 

sophisticated method of representation is required for developing geometries.  

It is proposed to use non-uniform rational B-splines (NURBS) to represent the 

different geometries. More details about NURBS can be found in Farin (1999, 2002). 

The advantages of NURBS are as follows, (a) they can represent practically any type 

of curve, i.e., smooth or with kinks (sharp edges), (b) they are easy to manipulate i.e. 

the parameters in the NURBS equations can be changed to change the shape of the 

curve they represent, and (c) they can be used in CFD geometry development easily, 

as many popular CFD packages support NURBS. 

The use of NURBS will allow us to represent the geometry in a parametric form 

and could potentially allow the design optimization at the port level. In other words, 

the optimal port shape could be an aero-foil or an elongated triangle. 
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Even though it is proposed to use NURBS for representing shapes, one can still 

use simple shapes such as circles, squares etc. if the HX in consideration warrants it. 

In the heat exchanger analysis presented in this chapter, the heat exchanger has 

circular ports and they are specified using a center point along with inner and outer 

radii. 

This geometry aspect is worth mentioning, since when it is coupled with the 

approach proposed in this chapter, it opens up a new avenue for rapid and streamlined 

evaluation of novel heat exchanger geometries. 

 

 

    (a) 

 

    (b) 

Figure 5.6 Different port shapes, (a) simple ports and (b) complex ports 
 

5.5.4 CFD Analysis 

For rapid CFD evaluation of novel geometries, the process of geometry 

generation, meshing and simulation need to be automated. An automated tool 

(Radermacher et al., 2007), termed as Parameterized Parallel Computational Fluid 
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Dynamics (PPCFD) was used to carry out CFD analysis automatically in batch mode. 

The flow chart for the operation of this PPCFD tool is shown in Figure 5.7.  

 

 
 

Figure 5.7 Automated CFD evaluations 
 

Conventionally, the geometry generation and the mesh generation steps are 

performed manually and are the most time consuming. In the new tool these steps 

have been automated by a computer program that reads input geometry parameters 

and generates these files. These files then serve as input to the CFD solver.  The 

PPCFD tool itself does not require any user intervention and can generate the outputs 

of interest, given a set of inputs. 

5.5.5 Verification with 3D CFD 

In order to gain confidence in the proposed approach, it is imperative that we 

verify the results obtained using the Hybrid approach with those obtained using 

detailed 3D CFD analysis. A suitably long segment of the chosen heat exchanger 

geometry was analyzed using 3D CFD method for a range of heat exchanger 

dimensions. The length of the HX segment is chosen such that it is greater than the 
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length of the entrance region. The length of the entrance region can be calculated 

based on analytical expressions available in the literature. The entrance region needs 

to be accounted for carefully, since the heat transfer and pressure drop in the entrance 

region is very different than the one in the fully developed flow region.  The same 

segments (i.e. same length and flow conditions) were analyzed using the new hybrid 

approach. 

The lower and upper bounds for the different design variables were fixed as 

shown in Table 5.1. Based on these bounds, a test matrix was generated using a 2-

level full factorial center augmented design (Myers and Montgomery, 2002). Each of 

these designs is referred to as a case for identification purposes. The 3D CFD as well 

as the hybrid approach was applied to these heat exchanger elements. The inlet flow 

conditions (velocity, pressure and temperature) were fixed. The results are compared 

based on the predicted air and water side pressure drop and the difference in the air 

and water temperature across the heat exchanger are shown in Figures 5.8, 5.9 and 

5.10. 

Figure 5.8 shows the error (difference between 3D CFD and the Hybrid solver) in 

the predicted air and water side pressure drops. The maximum absolute percent error 

for air side pressure drop is 23% and that for water is 45%. 
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Figure 5.8 Air and water pressure drop errors 
 

Figure 5.9 shows the error in predicted outlet temperatures for air and water.  The 

maximum absolute error for air outlet temperature is 3.5K while that for water is 

1.6K. Note that the water side heat transfer coefficient and the pressure drop are 

calculated using the correlations in CoilDesigner, namely, the Gnielinksi correlation 

(Gnielinski, 1976) for heat transfer and Churchill correlation (Churchill, 1977) for 

pressure drop. 
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Figure 5.9 Error in predicted outlet temperature 
 

Figure 5.10 shows the same outlet temperature errors, but plotted against the 

water side Reynolds number (Re). We observe that more of the high errors occur for 

cases with Re < 100. This brings to light the fact that the correlations in CoilDesigner 

are not applicable for flows with low Reynolds number, pointing to the need for new 

correlations for use in CoilDesigner. The correlations also do not account for the 

effect of the entrance region since they were created for fully developed flow. This 

leads to the conclusion that the hybrid approach can replace 3D CFD calculations for 

single phase flows for Re > 100. This approach was used in subsequent optimization 

studies. It was also found that the average Re for heat exchanger designs encountered 

during optimization was greater than 100. 
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Figure 5.10 Errors in outlet temperature vs. Re 
 

5.5.6 Design Optimization Approach 
In general design optimization is carried out via the coupling of an optimizer with 

a simulation. In this case the simulation is the Hybrid solver proposed in Section 

5.5.2. In conventional optimization, we would couple the Hybrid solver along with an 

optimization algorithm. Based on the design variables of interest, a MOGA is used 

for optimization. The use of the Hybrid solver with a MOGA still makes the task of 

optimization computationally prohibitive, since each function call will require a 2D 

CFD evaluation, which itself takes about 10-60 minutes each. The MOGA will 

invoke this simulation several thousand times. To reduce this computational burden, a 

previously developed approximation assisted optimization approach is used. 

Metamodels are developed for the air side performance (i.e. heat transfer coefficient 

and pressure drop) as a function of different geometry parameters such as Din, Hs, Vs, 

v and w. The adaptive DOE approach developed in Chapter 3 are used to build the 



 

 155 
 

metamodels. These metamodels are then coupled with CoilDesigner to evaluate 

performance of individual heat exchangers. 

The design optimization approach is shown in the form of a flow chart in Figure 

5.11. The different steps are as follows: 

Step-1: Start with concept geometry. In this chapter, the geometry shown in 

Figure 5.4 is used as the starting geometry. 

Step-2: Parameterize Geometry. The important parameters that affect the air side 

performance of the geometry are identified. This is done by conducting a full-

factorial analysis for all parameters of interest followed by analysis using scatter 

matrix plots. 

Step-3: Approximation using PPCFD. In this step, metamodels are developed for 

air side heat transfer coefficient and pressure drop using the adaptive DOE approach 

proposed in Chapter 3.  The automated tool PPCFD is used for conducting the CFD 

runs and post processing. Different Kriging correlations are evaluated for a best fit 

and Kriging metamodels are developed for air HTC and DP. 

Step-4:  Optimization. In this step, a MOGA is used to optimize the design of the 

heat exchanger. The objective is to find optimal heat exchangers which provide a 

given heat load for minimum air-side pressure drop and minimum HX volume. 

CoilDesigner is used to assemble heat exchangers and the metamodels developed in 

Step-3 are used to assess the air side performance. 
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Figure 5.11 Proposed design optimization approach for novel heat exchangers 

 

The result of Step-4 is a set of Pareto optimal heat exchanger designs that deliver 

a specified heat load. The optimization objectives chosen for analysis in this 

dissertation are air side pressure drop and HX volume, but any other heat exchanger 

performance parameter can be used. 
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5.6 Application of Single Response Adaptive DOE 

In this section, the procedure and the results for the application of single response 

adaptive DOE method (see Chapter 3) to heat exchanger design optimization is 

presented. 

 

5.6.1 Design Variables 
The input variables used to build the metamodel and their limits are given in 

Table 5.1. The outer diameter, the tube thickness and the leading and the trailing 

edges are a function of the inner diameter. This was based on prior analysis, but can 

be readily changed. Thus accounting for inner diameter also accounts for outer 

diameter, thickness and edges. The vertical and horizontal spacing needs to be 

accounted for, since it has a direct influence on the air-side heat transfer and pressure 

drop. The horizontal spacing also has an influence on the number of parallel ports a 

particular design will have. The depth was chosen such that the minimum number of 

ports is 1 and maximum number of ports is 41. Since the limits imposed on the inner 

diameter differ by an order of magnitude, it is imperative to have the limits on the 

other design variables scale accordingly. The velocity limit was chosen based on the 

velocity limits for conventional air-conditioning applications. All design variables 

mentioned below are normalized to the interval [0, 1] when used in DOE and 

metamodel development. 
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Table 5.1  Design variables for metamodel 
Design Variable Lower Limit Upper Limit 
Inner diameter, Din 0.1mm 1mm 
Horizontal spacing, Hs [mm] 1.5 × Dout 6.0 × Dout 
Vertical spacing, Vs [mm] 2 × Dout 4 × Dout 
Depth, w [mm] Function of Din Function of Din 
Air velocity, v [m/s] 1.0 3.0 
 

5.6.2 Metamodel Development – SFCVT Method 
The SFCVT method with the SO formulation presented in Eq. (3.9) was used. The 

DOE was carried out separately for the two responses viz., Air DP and Air HTC. 

Based on preliminary approximation studies, it was found that approximately 200 

points were needed to achieve MAS of more than 75 with an acceptability threshold 

of 10%. The initial design comprising of 100 points was generated using the MED 

method and the SFCVT method was used to sample 100 additional points. Kriging 

with logarithmic response (to avoid negative values during prediction) was used to 

develop the metamodel and a set of 250 randomly generated test points was used to 

verify the metamodel. The results of this verification are shown in Figures 5.12 and 

5.13. 

Figure 5.12a shows the RMSE, MAE and MAS for Air DP and HTC and Figure 

5.12b shows the RRMSE and RMAE for Air DP and HTC. It can be observed that 

more than 80% of the test points were predicted within 10% of the true value. From 

Figure 5.12b, we see that the maximum absolute prediction error was 23% for Air DP 

and 33% for Air HTC. These large errors were for cases for which the CFD 

simulation did not converge. 

Figure 5.13, shows the box plot for the verification errors, and we see that the 

median errors values are close to 0. Based on these verification results, the resulting 
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metamodels were found to be acceptable. These metamodels were then used for 

optimization. 
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Figure 5.12 Metamodel verification results for Air DP and HTC 
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Figure 5.13 Metamodel verification for Air DP and HTC, relative errors 
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5.6.3 Metamodel Development- MSFCVT Method 
 

Multiresponse metamodels were also developed using the MSFCVT method 

presented in Chapter 4. The MSFCVT method with the formulation presented in Eq. 

(4.2) was used. The method parameters were the same as the one used in the 

development of the SFCVT metamodel, i.e., 100 points in initial design, 100 

adaptively sampled points, with 5 new points selected per stage. The same random 

sample of 250 point was used for metamodel verification. The results are shown in 

Figure 5.14. 
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   (a)      (b) 

Figure 5.14 MSFCVT method verification for air DP and HTC, (a) RMSE,  MAE and 
MAS, (b) RRMSE and RMAE 

From Figure 5.14a, we can see that the approximately 80% of the verification 

points were predicted within ±10% of the actual value for both air HTC and DP.  The 

maximum absolute error in predicted air DP is 27% and for HTC is 36%. These errors 

occurred for cases that had convergence issues during CFD simulations. Comparing 
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the metamodel performance with that obtained from SFCVT method, we observe that 

the MSFCVT method yields similarly performing metamodels but with a fewer 

number of total function calls, i.e., 300 vs. 200. 

5.7 Design Optimization 

5.7.1 Problem Formulation 
Based on the performance evaluation criteria discussed earlier, the objective of 

the design problem was to find new heat exchanger design which has minimum air-

side pressure drop and minimum volume, but still has the same heat duty/capacity as 

a 1 kW air-to-water micro channel heat exchanger. 

For a fair comparison, the refrigerant side pressure drop (RDP) was constrained to 

be 1.5 times that of the microchannel heat exchanger used in the comparison. The 

optimization problem can be mathematically represented as: 

 
max

max

min  ADP, V

s.t.
1kW

ADP < ADP
RDP  RDP

[ , , , , , ]

HX

in

Q

HX Nt D Hs Vs w v

=

<
≡

 (5.1) 

where, ADP is the air-side pressure drop, V is the HX volume, Q is the heat load, 

ADP and RDP are the air and the refrigerant side pressure drops (respectively), 

ADPmax and RDPmax are the limits on ADP and RDP. Note that Nt is the number of 

parallel tubes in the heat exchanger and is discrete variable, while Din, Hs, Vs, w, v are 

all continuous. The MOOP represented by Equation 5.1 was solved using a MOGA. 
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The relevant problem parameters and constraint limits are shown in Table 5.2. The 

parameters used for MOGA are given in Table 5.3. 

Table 5.2 Optimization problem parameters 
Parameter Value 
Heat Load Q, minimum 1kW 
Heat Load Q, maximum 1.1 kW 
ADPmax 100 Pa 
RDPmax 1kPa 
Air inlet temperature 300K 
Water inlet temperature 350K 
Air flow rate 0.025 kg/s 
Water flow rate 0.025 kg/s 

 
Table 5.3 MOGA Parameters 

Parameter Value 
GA Population Size 100 
GA Population Replacement 10 
GA Max Iterations 500 
Continuous Variable bit length 10 

 

The metamodels obtained from the SFCVT method for air HTC and DP, 

described in Section 5.6.2, were used in the CoilDesigner calculations for predicting 

the coil performance. The resulting Pareto set comprising of 60 designs is shown in 

Figure 5.15. It can be observed that all the Pareto solutions have an air side pressure 

drop less than that of the baseline microchannel coil. There are 37 designs better than 

the baseline microchannel in terms of HX volume with the best heat exchanger 

having a 44% less volume than the baseline HX. All these heat exchangers have a 

heat load of 1 kW within +10%. The better designs also have an average of 61% less 

material volume and hence weight. 
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Figure 5.15  Pareto solutions for NGHX approximation assisted optimization 
 

The details of three sample designs are shown in Table 5.4, along with HX 

volume, air pressure drop and material volume. The designs shown are the ones 

which are better than the baseline microchannel coil. We observe that the new designs 

offer a significant reduction in heat exchanger volume and the air side pressure drop 

compared to baseline coil for the same application performance. 

 
Table 5.4 Sample Pareto solutions  

Normalized Design Variables HX 
Vol. 
[cm³] 

Air 
DP 
[Pa] 

Matl. 
Vol. 
[cm³] 

Pareto 
Design 

Nt Din Hs Vs w v    
1 162 0.316 0.265 0.0039 0.180 0.749 126.6 44.2 14.52 
2 176 0.344 0.252 0.0127 0.164 0.427 156.1 23.5 17.79 
3 188 0.367 0.020 0.0918 0.164 0.003 201.6 6.6 22.72 
          
Baseline 
Micro- 
channel 

NA 230.0 63.8 37.3 
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Figure 5.16 shows the data represented in Table 5.4. The three sample Pareto 

designs are shown in the main plot along with their relative volume (inset figure) 

compared to the baseline microchannel coil volume. 
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Figure 5.16 Sample Pareto designs and their relative volume compared to the baseline 
microchannel coil volume 

 

5.7.2 Pareto Optimal Designs – Approximation Perspective 
In this section we analyze the Pareto optimal results to evaluate how good the 

results obtained using approximation assisted optimizations are. 

The above optimization was carried out using metamodels for the air side 

performance of the HX segment. It is imperative that for all Pareto solutions we 

verify the predicted air-side performance with actual CFD runs and then re-calculate 
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the overall performance of the heat exchanger. The resulting percentage errors in the 

predicted air side pressure drop and heat transfer coefficients and subsequently the 

calculated heat load are shown in Figure 5.17. Based on the median values, the air 

side pressure drop is over predicted by 2.8%, the heat transfer coefficient is under-

predicted by 1.5% and subsequently the heat load is under-predicted by 0.91%. From 

a heat exchanger perspective, the over-prediction of pressure drop and under-

prediction of HTC is favorable, since it will give conservative designs. As seen from 

this figure, there are some outliers for heat load error values, from which 6 designs 

violate the heat load constraint (i.e. 1000W ≤ Q ≤ 1100W). 5 out of these 6 points 

have a heat load of less than 1kW with maximum deviation of 2.3% and one point has 

heat load more than 1100W with maximum error of 0.5% which is practically 

insignificant. Nevertheless, we update the Pareto set with the true responses of Air 

HTC and DP. The two Pareto sets are shown in Figure 5.18 below. They almost 

overlap. 
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Figure 5.17 CFD vs. Metamodel, percentage errors in predicted performance 
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Figure 5.18 Pareto Designs obtained using approximation and verification 
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5.7.3 Pareto Optimal Designs – Thermodynamic Perspective 

In this section we provide insight into the Pareto optimal design from a 

thermodynamic perspective. 

Careful analysis of the design variables corresponding to the Pareto solutions 

reveals that all of the solutions have the same or close enough normalized inner 

diameters in the range [0.3,0.40]. This is because the inner diameter has a direct 

impact on the pressure drop of the refrigerant. MOGA is forced to drive towards the 

lowest diameter which still satisfies the pressure drop constraint, while other variables 

such as the horizontal and vertical spacing and velocity take a wide range of values. 

The HX normalized depth for the Pareto designs was also in a narrow range of [0.16, 

0.31]. This is again due to the air side pressure drop constraint. The designs 

corresponding to smallest vertical spacing also had the corresponding smaller values 

for velocity, which again is influenced by the air side pressure drop objective. 

Overall, we observe that the new heat exchanger geometry is capable of 

performing better than the current state of the art microchannel (i.e., baseline 

microchannel coil). This improvement is mainly due to significant compactness of the 

new geometry. In other words, the new geometry can accommodate more heat 

transfer area per unit HX volume and per unit HX material volume. The above 

comparison was carried out for one application, but using the newly developed 

approach optimal HX designs for other applications (i.e., different fluid inlet 

conditions and heat load) can be readily obtained. As a final note, it should be pointed 

out that the above results should be validated experimentally. 



 

 168 
 

5.8 Summary 

In this chapter, a new approach for the multi-level performance evaluation and 

design optimization of novel heat exchanger elements is introduced. The objective of 

developing this approach is to allow streamlined search of novel heat exchanger 

geometries for air-to-refrigerant heat exchanger applications. Instead of conducting 

full fledged 3D CFD simulations, the new approach uses 2D CFD techniques coupled 

with an ε-NTU solver for heat exchanger performance evaluation. This results in over 

95% savings in computation time. The 2D CFD is used for air-side performance 

evaluation of small heat exchanger segment. The ε-NTU solver is then used to 

assemble these small HX segments or elements to design full scale heat exchangers. 

The new approach was verified for a range of dimensions for a heat exchanger. The 

comparison of the results (viz., pressure drop and change in temperature) showed that 

the new hybrid approach is valid for applications with single phase flows with 

Reynolds number greater than 100. 

Even though, the replacement of 3D CFD with the new approach results in 95% 

savings of computational effort, the execution time is still prohibitive (~ 1 week for 

one optimization run). We apply the single response adaptive DOE approach 

developed in Chapter 3 to this problem, where in we approximate the air performance 

(DP and HTC) obtained from the 2D CFD calculations. The resulting metamodels for 

air side DP and HTC had MAS of 80 which was acceptable for the current 

optimization problem. The fact that MAS of 80 is acceptable is further reinforced by 

the post-optimization verification results. 
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The optimization problem was formulated as an MOOP, minimizing the heat 

exchanger volume and the air side pressure drop while providing a heat load of 1 kW. 

A conventional state-of-the art microchannel heat exchanger was used as a baseline 

for comparison. The Pareto optimal designs resulting from the MOOP solution had 37 

heat exchanger designs that are better than the baseline heat exchanger, with a volume 

reduction of 44% and material reduction of 61%. In addition, the computational 

savings are enormous, since the metamodels can now be used for additional 

optimization studies with varying constraints etc. The Pareto designs obtained from 

the approximation assisted optimization were also verified against full CFD 

calculations. It was found that amongst the Pareto solutions obtained using 

approximation, 6 designs were infeasible but by a very marginal amount, while all 

other designs overlap with those obtained after CFD verification. 

The inner diameter and the depth of the heat exchangers corresponding to the 

Pareto solutions were distributed in a very narrow range. The refrigerant side pressure 

drop constraint was the dominating factor in the choice of inner diameters, while the 

air side pressure drop objective was the dominating factor for the depth of the heat 

exchanger. This is because, small inner diameter leads to higher refrigerant side 

pressure drop and larger depth leads to larger air side pressure drop. 
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Chapter 6 Conclusion 
 

In this dissertation three research thrusts are presented. The research thrusts are, 

(a) adaptive DOE approach for single response deterministic computer simulations, 

(b) adaptive DOE approach for multiresponse deterministic computer simulations and 

(c) approximation based framework for the performance evaluation and optimization 

of air-cooled heat exchangers. 

This chapter is organized as follows: Section 6.1 provides a summary of the three 

research thrusts followed by conclusions in Section 6.2. Section 6.3 highlights the 

main contributions of this dissertation and section 6.4 provides a discussion for 

potential future research direction. 

6.1 Summary 

In this section, the three research thrusts are summarized as follows: 

(a) Adaptive DOE for Single Response: In Chapter 3 an adaptive DOE method 

for single response deterministic computer experiments is presented. The 

proposed approach is based on the notion of tradeoff that needs to be made 

by a DOE method between allocating samples in sparsely populated 

regions of the design space versus allocating samples in regions in which 

the response is most sensitive. The sensitivity of the response in a 

particular region of the design space is gauged by the calculation of leave 

one out cross-validation error, while the sparsely sampled regions are 

tracked through the use of a space –filling criterion. The approach is such 
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that one point is sampled per stage, though there are provisions for 

sampling multiple points per stage to take advantage of parallel computing 

capabilities. The proposed approach is then applied to a suite of test 

problems compiled as a part of this dissertation. 

(b) Adaptive DOE for Multiple Responses: Chapter 4 extends the approach 

proposed in Chapter 3 to multiple responses. The problem of adaptive 

DOE for multiresponse case is posed as a multiobjective optimization 

problem where the tradeoff is between allocating new samples such that 

they simultaneously improve the metamodel performance for each of the 

responses. A multiobjective genetic algorithm is used to solve the 

optimization problem resulting in a set of Pareto optimal solutions. A level 

of dominance criteria is introduced to select one point from the Pareto set. 

(c) Approximation Based Framework for Design of Novel Heat Exchangers: 

In Chapter 5 a new approximation based framework is proposed to 

evaluate the multi-level performance of air-cooled heat exchangers. An 

approach that uses 2D CFD coupled with an ε-NTU heat exchanger model 

is developed and termed as the Hybrid solver. This Hybrid solver allows us 

to achieve the same results as those obtained using a detailed 3D CFD 

analysis but with an order of magnitude reduction in computational cost. 

The performance evaluation approach is then coupled with a multi-

objective genetic algorithm to find optimal designs for novel air-cooled 

heat exchanger. 
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6.2 Conclusions 

This section provides some concluding remarks on each research thrust. 

6.2.1 Single Response Adaptive DOE 
The cross validation based single response adaptive DOE approach outperforms 

existing adaptive methods such as MSD (Jin, et al., 2002), ACE (Li and Azarm, 2006; 

Li, 2007) and non-adaptive method such as the MED (Shewry and Wynn, 1987; 

Koehler and Owen, 1996) method in more than 50% of the test problems. The 

comparison was based on the median values of the metamodel performance metrics. 

This observation is supported by the descriptive statistics drawn from the results 

generated by applying the said approaches to the 24 test problems. In certain cases it 

was observed that even though the proposed approach does not perform better in 

terms of RMSE and MAE in comparison to other approaches, it does perform well in 

terms of the relative predictions, i.e., RRMSE and RMAE. Even though RMSE and 

MAE are widely used in the literature for comparing metamodel performance, the 

results in this dissertation show that these measures are not enough to judge a 

metamodel and as such additional metric such MAS is also used. The metrics of 

RMSE, MAE, RRMSE, RMAE and MAS are used in this dissertation to compare the 

performance of different metamodels. 

As detailed in Chapter 3, the proposed approach develops a metamodel of LOO 

errors to predict the regions of high sensitivity in the response space. For certain 

problems (e.g., test problem P10 in Chapter 3), these intermediate metamodels may 

not be accurate enough thus resulting in poor sampling which in turn leads to 

underperforming (compared to non-adaptive method) metamodels. It is important to 
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objectively evaluate the intermediate metamodels at each stage and if the metamodel 

is not acceptable, then the adaptive method must switch to a purely space-filling 

method such as MED. It should be pointed out that the proposed approach aims at 

sampling for a globally accurate metamodel. Thus, it yields better metamodels for 

problems with non-symmetric CAMM regions, where as non-adaptive space-filling 

methods are better suited for test problems with symmetric and highly distributed 

CAMM regions. 

In all the numerical experiments, only the Gaussian correlation was used for the 

Kriging metamodels. For certain types of problems, this correlation may not be the 

best correlation and hence during implementation multiple correlations need to be 

evaluated and the best chosen. 

6.2.2 Multiresponse Adaptive DOE 
The cross validation based multiresponse adaptive DOE approach outperforms 

existing adaptive DOE techniques (i.e., DMM method by Li, et al., 2006, MCVV 

method by Romero, et al., 2006) based on the results published in the literature. The 

newly developed approach was also applied to a suite of 8 test problems with multiple 

inputs and multiple responses. Based on the numerical experiments, it was found that 

the MSFCVT approaches yields comparable or better metamodels for all responses 

simultaneously when compared with those obtained using the MED (Shewry and 

Wynn, 1987; Koehler and Owen, 1996) method. 

The conclusions drawn for the single response adaptive DOE method in Section 

6.2.1 are also applicable to the multiresponse adaptive DOE method. 
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It was observed at each stage, that MSFCVT simultaneously tried to improve the 

metamodels for each of the multiple responses. This can sometimes lead to over-

improvement in some of the metamodels as observed for Numerical Example-1. At 

some point during the adaptive DOE phase, the performance of individual 

metamodels needs to be evaluated and the MSFCVT method needs to focus on the 

responses with less accurate metamodels. This cannot be carried out in the current 

implementation, since no assumption about availability of a test sample for 

verification was made. 

6.2.3 Approximation Based Framework for Design of  Novel Heat Exchangers 

A new approach for multi-level performance evaluation of novel heat exchanger 

geometries that uses approximation assisted optimization is developed and applied to 

a real world case study.  

The proposed Hybrid approach is valid for single phase flows with Re > 100.  

This is because the correlations in CoilDesigner are not valid in the low Re range. 

This results in large calculation errors in the water side heat transfer coefficients and 

pressure drop, which in turn affects the air-side performance, leading to large 

discrepancies between the heat exchanger performance obtained using a full 3D CFD 

simulation and those obtained using the hybrid approach. 

In the study, individual metamodels were developed for the air side DP and HTC, 

with 100 initial points and 100 new points for each metamodel, resulting in a total of 

300 function evaluations (i.e., initial 100 points were common). The metamodels 

were verified using 250 randomly generated samples. The resulting MAS was 80.0 

for both air HTC and DP. Optimization was carried out with these metamodels and 
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the results were verified against actual CFD runs. The comparison was surprisingly 

good with the median prediction errors of 2.8% (over-prediction), 1.5% (under-

prediction) and 0.9%  (under-prediction) for air DP, HTC and heat load respectively, 

leading to the conclusion that for multi-level analysis (e.g., simulation at heat 

exchanger segment level and simulation at the heat exchanger level) a low fidelity, 

i.e., relatively less accurate metamodel may be acceptable. This is because at the top 

level, the errors in low level metamodels do not have a significant impact. If an 

uncertainty analysis can be carried out in early stages of analysis and optimization, it 

could result in computational savings, since the metamodels need not be highly 

accurate. 

Analysis of the Pareto optimal designs led to the conclusion that the optimization 

search was dominated by the refrigerant side pressure drop constraint which is a 

function of the tube inner diameter. All the Pareto solutions had normalized Din in the 

interval [0.3, 0.4]. Another factor heavily driving the search was the air-side pressure 

drop objective, which is influenced by the depth of the heat exchanger in the air-flow 

direction in addition to air velocity and vertical spacing. All Pareto designs had 

normalized depth in the range [0.16, 0.31]. 

Based on the promising designs obtained using the proposed approach, it is 

concluded that this tool will significantly improve the way novel heat exchangers 

with the proposed and similar geometry are explored.  
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6.3 Contributions 

The main research contributions of this dissertation are: 

1. An approach for single response adaptive DOE for deterministic computer 

simulations has been developed. A new problem formulation is proposed that 

views adaptive DOE problem as a multiobjective optimization problem. 

Applicability of the proposed approach has been tested on a broad set of test 

problems from the literature. It is shown that on an average the proposed 

approach yields better metamodel for the same number of function calls, than 

the approaches in the literature.  

2. An approach for multiresponse adaptive DOE has been developed. A new 

multiobjective problem formulation is proposed which makes tradeoffs 

between the multiple responses. Applicability of the proposed approach is 

verified by successfully applying it to the test problems from literature. Based 

on comparison with published results, it is shown that the proposed approach 

performs better than two other adaptive DOE methods from the literature. It is 

shown that in multiresponse DOE, there is a tradeoff between allocating 

points to improve one response vs. another. 

3. A new multi-level performance evaluation and optimization approach has 

been developed for design of novel air-cooled heat exchangers. The approach 

helps reduce the computation time from a few months to a couple of days, 

resulting in over 95% savings in computational effort without any practical 

loss of accuracy in the results. In this approach, the heat exchanger 
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performance is evaluated not only at the element level, which is the 

conventional approach, but also at the component level. The component level 

evaluation tells us upfront as to whether the new geometry can compete with 

current state of the art heat exchangers. The multi-level performance 

evaluation approach along with the approach developed in 1 above is used in 

the development of a multi-objective genetic algorithms based optimization 

tool for the optimization of novel heat exchanger. The new heat exchanger 

design has 44% less volume and uses 61% less material compared to current 

state of the art microchannel heat exchangers. The new heat exchanger design 

approach is not limited to conventional geometries (e.g. round tubes) and can 

be applied to non-conventional heat exchanger geometries such as tubes with 

aero-foil shaped cross section.   

 

6.4 Future Research Directions 

The research presented in this dissertation has addressed several shortcomings of 

adaptive DOE approaches proposed in the literature. In order to make the approach 

more efficient and less sensitive to initial samples, the following research directions 

could be pursued: 

(a) The examples shown in this dissertation used the proposed approach to 

develop metamodels for the entire design space (global metamodels). But the 

approach can also be used with a restricted design space. One example of such 

an application is online approximation, where the M/SFCVT method can be 

used to intelligently sample new points in the regions of expected optima. 
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(b) The resource allocation problem, wherein the total number of available 

function calls is fixed and then the approach should be able to judiciously and 

objectively allocate samples for initial design, subsequent sequential sampling 

and for random verification. Moreover, the approach needs to handle this 

without any prior knowledge of the computer simulation. A preliminary 

approach is proposed in Section 3.6.  But a clever way to evaluating 

metamodel performance and stalling condition without additional function 

calls is required. 

(c) In developing the metamodels for the LOO errors, a Gaussian correlation was 

used. Other correlation options need to be investigated along with any 

additional tuning. At each stage the best LOO model needs to be developed 

and since no information about the simulation is known, this points to a trial 

and error strategy where each type of correlation could be tried and compared. 

(d) In the studies presented, the MED method was used to generate all initial 

designs. Other space filling techniques such as Latin-hypercubes should be 

investigated. 

(e) The proposed cross-validation approach can be extended to non-Kriging based 

metamodels. 

(f) Develop a convenient graphical user interface for the approximation based 

framework for performance evaluation of heat exchangers, which will allow 

end-users from the industry to quickly and efficiently evaluate novel heat 

exchanger geometries. 
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(g) In Chapter 5, for the geometry under consideration, no significant structural 

analysis was required. But in real life, new concepts may require careful 

tradeoff between structural aspect (i.e., material used) and the heat transfer 

performance giving rise to a multidisciplinary optimization problem possibly 

a coupled problem. A possible multiobjective collaborative optimization 

approach such as the one presented in Aute and Azarm (2006) could be 

implemented as a part of the framework. The use of approximation is a must 

in such problems since the computational effort increases super linearly with 

the number of different disciplines involved. 
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Appendix-A Test Problem Suite 
 

In order to evaluate the general applicability of the approaches proposed in this 

dissertation, a suite of test problems was compiled. Some of these test problems are 

based on those found in the literature and used by other researchers (Jin et al., 2002; 

Li and Azarm, 2006; Romero et al., 2006), while others were devised as a part of this 

dissertation (see below). The test problems are used to evaluate the following aspects 

of an adaptive design of experiments approach: (a) scalability to more than two 

dimensions, and (b) applicability to multi-modal and highly sensitive responses. The 

remainder of this Appendix provides short background and the literature references 

for each of the test problems, followed by the equations and the domain of each 

problem.  

Problem P1 and P4 are from Dixon and Szego (1978), P2, P13, P14 and P16 are 

made up test problems. P5 is Griewank’s function (Hedar, 2005), P6 is Himmelblau’s 

function and P7 is the hump function (Floudas et al., 1999), P11 is Rastrigin’s 

function (Hedar, 2005) , P12 is Schwefel’s function (Hedar, 2005) and P17 is 

Coleville function (Hedar, 2005), P15 is the wine bottle function (Van Veldhuizen 

and Lamont, 1998). Problem P9 is Osio’s function (Osio and Amon, 1996), P8 is 

Sasena’s function (Sasena et al., 2000) and P10 is Busby’s (Busby et al., 2007) 

function. Problems P18, P19 and P20 are the scaled 4 dimensional versions of their 2 

dimensional counterparts while problems P22, P23 and P24 are scaled to 8 

dimensions, i.e., 8 inputs. Problem P21 is the borehole model simulation from Joseph 

et al., (2008) 
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Table A.1 Single response test problems 
Sr. 
No. 

Problem 

1. P1: Branin Function (Dixon and Szego, 1978) 

1 1
2 1

1 2

5 1[ 5.1 2 6]2 10 1 cos( ) 10
2 8

[ 5,10], [0,15]

x xy x x

x x
π π π

⎛ ⎞ ⎛ ⎞= − + − + − +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∈ − ∈
 

2. P2: Trigonometric Function-1 

2 2
1 2

1 2

cos( )
, [ 5,5]

y x x
x x
= +

∈ −
 

3. P3: Dixon-Price Function (Hedar, 2005) 

2 2 2
1 1

2
( 1) (2 )

[ 10,10], 1,...,
2

n

i i
i

i

y x i x x

x i n
n

−
=

= − + −

∈ − =
=

∑
 

4.  P4: Goldstein-Price (Dixon and Szego, 1978) 

2 2 2
1 2 1 1 2 1 2 2 1 2

2 2
1 1 2 1 2 2

1 2

[1 ( 1) (19 14 3 14 6 3 )][30 (2 3 )2

(18 32 12 48 6 27 )]
, [ 2,2]

y x x x x x x x x x x

x x x x x x
x x

= + + + − + − + + + − ×

− + + − +
∈ −

 

5. P5: Griewank Function (Hedar, 2005) 

2

1 1

cos( / ) 1
4000

[ 20,20], 1,...,
2

nn
i

i
i i

i

xy x i

x i n
n

= =

= − +

∈ − =
=

∑ ∏
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6. P6: Himmelblau’s Function (Floudas et al., 1999) 

2 2 2 2
1 2 1 2

1 2

( 11) ( 7)
, [ 4, 4]

y x x x x
x x
= + − + + −

∈ −
 

7. P7: Hump Function (Floudas et al., 1999) 

2 4 6 2 4
1 1 1 1 2 2 2

1 2

14 2.1 4 4
3

, [ 5,5]

y x x x x x x x

x x

= − + + − +

∈ −
 

8. P8: Sasena’s Function  (Sasena et al., 2000) 

2 2 2
2 1 1 2 1 1 2

1 2

2 0.01( ) (1 ) 2(2 ) 7sin(0.5 )sin(0.7 )
, [0,5]

y x x x x x x x
x x
= + − + − + − +

∈
 

9. P9: Osio’s Function (Osio and Amon, 1996) 

1 1 1 2
1

1 2

1cos(6( 0.5)) 3.1(| 0.7 |) 2( 0.5) sin( ) 0.5
| 0.5 | 0.31

, [0,1]

y x x x x
x

x x

= − + − + − + +
− +

∈
 

10. P10: Busby’s Function (Busby et al., 2007) 

2 2 7
1 2 1/2

1 22 2
1 2

1 2

sin( ) 10
7 3 | |

, [ 10,10]

x x
y x x

x x
x x

−+ +
= + −

+

∈ −

 

11. P11: Rastrigin’s Function (Hedar, 2005) 

2 2
1 2 1 2

1 2

20 10(cos(2 ) cos(2 ))
, [ 1,1]

y x x x x
x x

π π= + + − +
∈ −
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12. P12: Schwefel Function (Hedar, 2005) 

1
418.9829 ( sin | |)

[ 500,500], 1,...,
2

n

i i
i

i

y n x x

x i n
n

=

= −

∈ − =
=

∑
 

13 P13: Trigonometric Function-2 

1 2

1 2

sin( )
[0,2 ], [0, ]

y x x
x xπ π
= +
∈ ∈

 

14. P14: Trigonometric Function-3 

1 2

1 2

sin( ) cos( )
, [ 3,3]

y x x
x x
=

∈ −
 

15. P15: Wine Bottle Function (Van Veldhuizen and Lamont, 1998) 

2 2
2 2

1 2

1 2

1
9.32

3 sin( 2)
2

6 3   ;   6 3
, [0,1]

Cy

A BC A B

A x B x
x x

+
=

+ +
= + + +

= − = −
∈

 

16. P16: Numerical Function-1 

2 2
1 2 1 2

1 2

/ ( 0.1)
, [ 10,10]

y x x x x
x x
= + +

∈ −
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17. P17: Coleville Function (Hedar, 2005) 

2 2 2 2 2 2 2
1 2 1 3 3 4 2 4 2 4

1,  1,..., 4

100( ) 90( ) 10.1( ) 19.8
[ 10,10],  1,..., 4

i i

i

a x i

y x x a a x x a a a a
x i

= − =

= − + + + − + + +
∈ − =

 

18. P18: Dixon-Price Function, 4D 

Same as P3 with n=4 

19. P19. Griewank’s Function, 4D 

Same as P5, with n = 4 

20. P20: Schwefel Function, 4D 

Same as P12 with n=4 

21. P21: Borehole model  (Joseph et al., 2008) 

2

2 ( )
2ln( / ) 1

ln( / )
[0.05,0.15],  [100,50000]
[63070,115600],  [990,1110]
[63.1,116],  [700,820]
[1120,1680],  [9855,12045]

u u l

u u
w

w w w l

w

u u

l l

w

T H Hy
LT Tr r

r r r K T
r r
T H
T H
L K

π −
=

⎡ ⎤
+ +⎢ ⎥

⎣ ⎦
∈ ∈
∈ ∈
∈ ∈

∈ ∈

 

22. P22: Dixon-Price Function, 8 Dimensions 

Same as P3, with n=8 

23. P23: Griewank’s Function, 8 Dimensions 

Same as P5, with n = 8 

24. P24: Scwefel’s Function, 8D 

Same as P12 with n=8 
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On the following pages the respective response surfaces are shown for test 

problems P1 through P16 with inputs normalized to [0, 1]. The normalization is 

carried out by linearly mapping the ranges of input variables shown in Table A.1 for 

each input to the interval [0, 1]. As an example, in problem P5, the input range of       

[-20, 20] is changed to [0, 1] by replacing x with (x+20)/40. (x+20)/40 has the range 

[0, 1] as shown in the figures. 
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   (a)      (b) 
Figure A.1 Response surface for problem (a) P1 and (b) P2 

 

0

0.5

1

0

0.5

1
0

2

4

6

8

x 10
4

x1
x2

y

0

0.5

1

0

0.5

1
0

5

10

x 10
5

x1
x2

y

 

    (a)     (b) 
Figure A.2 Response surface for problem (a) P3 and (b) P4 
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    (a)     (b) 

Figure A.3 Response surface for problem (a) P5 and (b) P6 
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    (a)     (b) 

Figure A.4 Response surface for problem (a) P7 and (b) P8 
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    (a)     (b) 

Figure A.5 Response surface for problem (a) P9 and (b) P10 
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    (a)     (b) 

Figure A.6 Response surface for problem (a) P11 and (b) P12 
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   (a)      (b) 
Figure A.7 Response surface for problem (a) P13 and (b) P14 

 

0

0.5

1

0

0.5

1
0

0.5

1

x1
x2

y

0

0.5

1

0

0.5

1
-0.5

0

0.5

x1
x2

y

 

   (a)      (b) 
Figure A.8 Response surface for problem (a) P15 and (b) P16 
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In Table A.2, the multiresponse test problems are described. The multiresponse test 

problems are basically a combination of the single response test problems used to 

mimic a multiresponse black-box simulation. The test problems are labeled PM1-

PM8. For each response, the corresponding problem number from the single response 

test suite from Table A.1 is given. 

Table A.2 Multiresponse test problems 
Sr. 
No. 

Problem 

1. Problem PM1 

y1≡ P17, y2 ≡ P18 

2. Problem PM2 

y1≡ P19, y2 ≡ P20 

3. Problem PM3 

y1≡ P21, y2 ≡ P22 

4. Problem PM4 

y1≡ P23, y2 ≡ P24 

5. Problem PM5 

y1≡ P1, y2 ≡ P6, y3≡ P8, y4 ≡ P3 

6. Problem PM6 

y1≡ P4, y2 ≡ P11, y3≡ P7, y4 ≡ P10 
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7. Problem PM7 

y1≡ P17, y2 ≡ P18, y3≡ P19, y4 ≡ P20 

8. Problem PM8 

y1≡ P21, y2 ≡ P22, y3≡ P23, y4 ≡ P24 
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